M211692EN-D

Quick Guide

Vaisala Humidity and Temperature Transmitter Series

HMDW110

PUBLISHED BY

Vaisala Oyj Vanha Nurmijärventie 21, FI-01670 Vantaa, Finland P.O. Box 26, FI-00421 Helsinki, Finland +358 9 8949 1 www.vaisala.com docs.vaisala.com

© Vaisala Oyj 2023

No part of this document may be reproduced, published or publicly displayed in any form or by any means, electronic or mechanical (including photocopying), nor may its contents be modified, translated, adapted, sold or disclosed to a third party without prior written permission of the copyright holder. Translated documents and translated portions of multilingual documents are based on the original English versions. In ambiguous cases, the English versions are applicable, not the translations.

The contents of this document are subject to change without prior notice.

Local rules and regulations may vary and they shall take precedence over the

information contained in this document. Vaisala makes no representations on this document's compliance with the local rules and regulations applicable at any given time, and hereby disclaims any and all responsibilities related thereto.

This document does not create any legally binding obligations for Vaisala towards customers or end users. All legally binding obligations and agreements are included exclusively in the applicable supply contract or the General Conditions of Sale and General Conditions of Service of Vaisala.

Table of contents

English	5
Deutsch	3
Français	1
日本	9
中文7	7
Русский	3

Introduction to HMDW110 series

Vaisala HUMICAP[®] Humidity and Temperature Transmitter Series HMDW110 measure relative humidity and temperature in multiple HVAC applications. The series includes transmitters for duct mounting, IP65-rated wall transmitters, immersion temperature transmitters, and outdoor transmitters with integrated radiation shields. The transmitters can be ordered with an optional display or without a display.

The series consists of the following models:

- HMD110/112 models (RH+T) for installation in ventilation ducts
- TMD110 (T) temperature transmitter for duct installation
- HMW110/112 models (RH+T) for wall installation
- TMW110 (T) temperature transmitter for wall installation
- HMS110/112 models (RH+T) for outdoor use
- TMI110 models (T) for measuring heating/cooling water temperatures

The transmitters can be ordered as:

- Loop powered models, with 2-wire current outputs for humidity (when applicable) and temperature
- Separately powered models, with RS-485 Modbus RTU output

HMD112, HMW112, and HMS112 are standard models that are preconfigured for current output at the factory. HMD110, TMD110, HMW110, TMW110, TMI110, and HMS110 are factory configurable models that are delivered with customer specific output settings, including calculated humidity parameters (when applicable) and special scaling of current outputs, or factory activated Modbus RTU functionality.

HMDW110 series transmitters offer numerous output parameters. The measured parameters are relative humidity (RH) and temperature (T), and the other parameters are calculated based on RH and T. Check the type label on your transmitter to verify its output parameters and scaling of the output channels.

Parameter	Symbol	Units	Description
Temperature	Т	°C	Temperature in Celsius or Fahrenheit scale.
		°F	
Relative humidity	RH	%	Ratio of the partial pressure of water vapor in the air to the saturation vapor pressure of air at current temperature.
Dew point	T _{d/f}	°C °F	Temperature at which the water vapor in the air will condense into water at the current pressure. When the dew point is below 0 °C, the transmitter outputs frost point (T_f) instead of dew point.
Enthalpy	h	kJ/kg BTU/lb	Sum of the internal energy of a thermodynamic system.
Wet bulb temperature	Tw	°C °F	The minimum temperature that can be reached by evaporative cooling in the current conditions.

Table 1 HMDW110 Series Output Parameters

HMDW110 Series Datasheet and User Guide (in English) are available from the product page at www.vaisala.com/hmdw110 and at the docs.vaisala.com documentation portal.

HMD110/112 and TMD110 installation

- Medium size crosshead screwdriver (Pozidriv) for the screws on the cover and the flange
- Small flat head screwdriver for screw terminals
- Drill with 2.5-mm and 13-mm bits for making the installation holes
- Tools for cutting and stripping wires
- 19-mm open-end wrench for tightening the cable gland

Figure 1 HMD110/112 and TMD110 installation

- 1. Remove the yellow transport protection cap and separate the fastening flange from the transmitter.
 - 2. Use the flange to mark the location and size of the installation holes on the side of the duct.
 - 3. Drill the installation holes in the duct. Secure the fastening flange to the duct with the two screws (included).

4. Push the probe of the transmitter through the flange and into the duct. The probe should reach far enough so that the sensor is located in the middle of the duct.

Figure 2 HMD110/112 and TMD110 centering inside duct

- 5. Secure the transmitter to the flange by tightening the screw on the flange that holds the probe in place.
- 6. Open the transmitter cover and route the cables through the cable glands.

Connect the wires to the screw terminals according to the wiring instructions.

7. Tighten the cable gland(s) and close the transmitter cover.

HMW110/112 and TMW110 installation

- Medium size crosshead screwdriver (Pozidriv) for cover screws
- Small flat head screwdriver for screw terminals
- Two installation screws: $\emptyset \le 3.5$ mm, head $\emptyset \le 8$ mm
- Depending on the wall material and screw type, you may need a drill and a suitable drill bit to make installation holes for the screws
- Tools for cutting and stripping wires
- 19-mm open-end wrench for tightening the cable gland

Figure 3 HMW110/112 and TMW110 installation

- Open the transmitter cover and use two screws (not included) to attach the transmitter to the wall. The probe and cable gland should point down.
 - 2. Open the transmitter cover and route the cable through the cable gland.

Connect the wires to the screw terminals according to the wiring instructions.

- 3. Tighten the cable gland and close the transmitter cover.
- 4. Remove the yellow transport protection cap from the probe.

HMS110/112 installation

- ×
- Medium size crosshead screwdriver (Pozidriv)
- Small flat head screwdriver for screw terminals
- Tools for cutting and stripping wires

• 19-mm open-end wrench for tightening the cable gland Additional tools for pole installation:

• Zip ties for securing the cable to the pole

- Additional tools for wall installation:
- Drill and bits
- Screws (2 pcs, \emptyset < 5.5 mm) and wall plugs
- Cable clips for securing the cable to the wall
- 1. Open the six screws that hold the transmitter cover.
 - 2. Route the power and signal cable through the cable gland, and connect the wires to the screw terminals according to the wiring instructions:
 - Wiring devices with analog output (page 15)
 - Wiring devices with Modbus output (page 17)

For the arrangement of the screw terminals, see HMDW110 series component boards (page 13).

3. Adjust the length of cable between the cable gland and the terminal blocks.

Make the cable short enough to close the cover without leaving a cable loop in the transmitter.

4. Disconnect the wired screw terminal blocks by pulling them off from the component board.

5. Pole installation mounting:

- a. Use the supplied clamp and screws to mount the transmitter on a pole.
- b. To prevent the transmitter from turning on the pole, tighten the set screw on the center hole of the clamp.

6. Wall installation mounting:

- a. Drill two holes for wall plugs 100 mm apart.
- b. Place the wall plugs in the holes.
- c. Mount the transmitter using two screws of sufficient length.

7. Plug in the screw terminal blocks, close the cover, and tighten the screws.

8. Secure the cable to the pole using a zip tie, or on the wall using cable clips. Allow some cable to hang down from the cable gland to prevent water from entering the transmitter along the cable.

HMDW110 series component boards

The component boards of the HMDW110 series transmitters have 2 output types: Modbus mode (RS-485) and analog mode (current output). The output type is selected when ordering the device. See the type label of the device to see the chosen output type.

The component boards have also a service port for configuration and calibration use.

Figure 4 Component board of models HMD110/112, HMW110/112, and HMS110/112, with humidity and temperature measurement

Figure 5 $\,$ Component board of models TMD110, TMW110, and TM1110, with temperature measurement only

- 1 Terminal block for 4 ... 20 mA current loop output(s). Must be disconnected when the transmitter is powered through RS-485 connection in the lower terminal block (terminals 1 ... 4).
- 2 Service port connector (4-pin M8)
- 3 Terminal block for RS-485 output. For Modbus connection.

You can pull out the terminal blocks from the component board for easier installation, and to disconnect the transmitter from power and RS-485 when using the service port.

1

Before using the transmitter in Modbus mode, always disconnect the terminal block for terminals 5 ... 8 to prevent the effects of ground loop on measurements. The RS-485 connector used for Modbus communication in the lower terminal block will power the transmitter.

Connecting to service port

Before connecting the transmitter to a PC:

- If the terminal block for terminals 5 ... 8 is wired, pull it out. This disconnects the transmitter from supply voltage and prevents possible equipment damage that may be caused by ground loops. The locations of the terminal blocks and the service port are shown in HMDW110 series component boards (page 13).
- If the other terminal block is wired (terminals 1 ... 4), pull it out also. This prevents the communication between the transmitter and the RDP100 remote display panel or Modbus (RS-485) host from interfering with your connection.

The service port is intended for a temporary connection to the transmitter. You can use it for configuration, calibration, and troubleshooting using a computer with Windows operating system. Use Vaisala Insight software to connect to the transmitter. You also need a Vaisala USB cable for computer connection (order code 219690).

The RS-485 line of the service port is shared with the connection to RS-485 Modbus output/ output to RDP100 remote display panel; the M8 service port connector is just an additional connector for easier access.

Download Insight software at www.vaisala.com/insight.

For more information and examples of using Vaisala Insight software and serial commands, see *HMDW110 Series User Guide (M211726EN)* available at www.vaisala.com/hmdw110.

Wiring HMDW110

Wiring devices with analog output

HMDW110 series transmitters are designed for a supply voltage range of 10 ... 28 V DC. The minimum required voltage depends on the loop resistance (0 ... 600Ω) as shown below.

With HMDW110 series transmitters ordered with analog output, you must always connect the first current loop (terminals 5 and 6) to power the transmitter. With models HMD110/112, HMW110/112, and HMS110/112, connecting the second current loop (terminals 7 and 8) is optional.

Figure 8 TMI110, TMW110, and TMD110 wiring, analog output

Wiring both current loops with a single power supply

Figure 9 HMD110/112, HMW110/112, and HMS110/112 wiring with single power supply

Wiring HMDW110 with RDP100 remote display panel

Figure 10 HMDW110 wiring with RDP100 remote display panel

You must always connect the humidity measurement current loop (**HUM**, terminals 5 and 6) to power the transmitter. Connecting the temperature measurement current loop (terminals 7 and 8) is optional.

Connect the RDP100 remote display panel using terminals 1 ... 4. The HMDW110 series transmitter provides both power and data to the RDP100.

Terminals 1... 4 shall be used only for connecting the RDP100 (optional) when using the analog outputs. If the RDP100 is not used, terminals 1... 4 must be left unconnected. Otherwise the analog outputs may output incorrect readings.

The **GND** input of the RDP100 must be connected only to terminal 3 of the HMDW110 transmitter. It must not be connected to any local ground potential.

When using the RDP100 with HMDW110 series transmitters, do not connect the **Extpwr** jumper to the RDP100 component board.

Wiring devices with Modbus output

Use terminals 1 ... 4 for supply power and Modbus output. In addition to RS-485 data wires, the common wire (ground reference) must be connected between the RS-485 host and the transmitter.

Figure 11 HMDW110 series transmitter wiring, Modbus output

1

Do not connect the analog outputs (terminals 5 ... 8) at the same time when supply power and/or Modbus output is connected to terminals 1 ... 4. Having both terminals connected simultaneously may result in erroneous analog readings caused by effects of possible ground loop.

Modbus communication

Transmitters ordered with the Modbus configuration option are accessed using the Modbus serial communication protocol. The supported Modbus variant is Modbus RTU (Serial Modbus) over RS-485 interface.

Description	Default Value
Serial bit rate	19200
Parity	Ν
Number of data bits	8
Number of stop bits	2
Modbus device address	240
Serial delay	0
Communication mode	Modbus RTU

Table 2 Default Modbus serial communication settings

Use Vaisala Insight software to change the Modbus serial communication settings if needed. Download Insight software at www.vaisala.com/insight.

Data encoding

Registers using "32-bit float" data format are encoded using the "binary32" encoding defined in IEEE 754 (also known as "single-precision floating point format").

The least significant 16 bits of a floating point number are placed at the Modbus register listed in the table, while the most significant 16 bits are placed in the register with number/ address + 1, as specified in Open Modbus TCP Specification, Release 1.0. This is also known as "little-endian" or "Modicon" word order.

Reading the measurement data registers with incorrect floating point format setting may occasionally result in correct-looking values. It is highly recommended to first try reading the register number 7938 (floating point test) to see that you have configured the floating point format correctly on your Modbus host system.

Test value registers

Read the known test values from the test registers to verify the functionality of your Modbus implementation.

Table 3 Modbus test registers (read-only)

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Test value
7937	1F00 _{hex}	Signed integer test	16-bit integer	-12345
7938	1F01 _{hex}	Floating point test	32-bit float	-123.45

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Test value
7940	1F03 _{hex}	Text string test	7-character ASCII string	Text string "-123.45"

Measurement data registers

Accessing unavailable (temporarily missing) measurement data does not generate an exception. "Unavailable" value (a quiet NaN) is returned instead.

Measurement output is shown in metric units. If non-metric values are needed in Modbus use, the units shall be converted in the Modbus master (PLC) using the scaling functions typically available.

Table 4 HMD110/112, HMW110/112, and HMS110/112 Modbus measurement data registers (read-only)

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Unit
1	0000 _{hex}	Relative humidity	32-bit float	%RH
3	0002 _{hex}	Temperature	32-bit float	°C
9	0008 _{hex}	Dew/frost point temperature	32-bit float	°C
19	0012 _{hex}	Wet bulb temperature	32-bit float	°C
27	001A _{hex}	Enthalpy	32-bit float	kJ/kg

Table 5 TMI110 Modbus measurement data register (read-only)

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Unit
3	0002 _{hex}	Temperature	32-bit float	°C

Vaisala Insight software

Vaisala Insight PC software can be used to check, configure, and adjust HMDW110 series transmitters intuitively without typing any serial commands. The transmitter can be connected to Insight software using a Vaisala USB cable for computer connection (order code 219690).

With the Insight software, you can:

- See device information and status.
- · See real-time measurement.
- Configure serial communication settings, filtering factor, and analog output parameters and scaling.
- Calibrate and adjust the device.

Insight software guides you when changing the settings and performing adjustments on the transmitter. However, please read carefully the chapters on calibration and adjustment in *HMDW110 Series User Guide* (M211726EN) before performing adjustments on your HMDW110 device.

Download Insight software at www.vaisala.com/insight.

HMDW110 series transmitters support Insight from transmitter software version 2.2.3 onwards.

Connecting to Insight software

- Computer with Vaisala Insight software installed
- USB connection cable (item code 219690)

CAUTION! When connecting several devices at the same time, note that your computer may not be able to supply enough power through its USB ports. Use an externally powered USB hub that can supply >2 W for each port.

Before connecting the transmitter to a PC:

- If the terminal block for terminals 5 ... 8 is wired, pull it out. This disconnects the transmitter from supply voltage and prevents possible equipment damage that may be caused by ground loops. For the locations of the terminal blocks and the service port, see the component board description.
- If the other terminal block is wired (terminals 1... 4), pull it out also. This prevents the communication between the transmitter and the Modbus (RS-485) host from interfering with your connection.
- 1. Open Insight software.
 - 2. Connect the USB cable to a free USB port on the PC.
 - 3. Connect the USB cable to the service port of the transmitter.

4. Wait for Insight software to detect the transmitter.

If the transmitter is not detected, disconnect and reconnect the Vaisala USB cable to the service port connector of the transmitter.

Technical support

Contact Vaisala technical support at helpdesk@vaisala.com. Provide at least the following supporting information as applicable:

- Product name, model, and serial number
- Software/Firmware version
- Name and location of the installation site
- Name and contact information of a technical person who can provide further information on the problem

For more information, see www.vaisala.com/support.

Warranty

For standard warranty terms and conditions, see www.vaisala.com/warranty.

Please observe that any such warranty may not be valid in case of damage due to normal wear and tear, exceptional operating conditions, negligent handling or installation, or unauthorized modifications. Please see the applicable supply contract or Conditions of Sale for details of the warranty for each product.

Recycling

Recycle all applicable material according to local regulations.

Einführung zur Serie HMDW110

Die Vaisala HUMICAP[®] Feuchte- und Temperaturmesswertgeber der Serie HMDW110 sind für die Messung von relativer Feuchte und Temperatur in zahlreichen HLK-Anwendungen ausgelegt. Diese Geräteserie umfasst Messwertgeber für die Rohrmontage, Messwertgeber für die Wandmontage in IP65-Ausführung, Tauchtemperaturmesswertgeber sowie Außenmesswertgeber mit integrierter Schutzabdeckung. Die Messwertgeber können mit oder ohne Display bestellt werden.

Die Baureihe besteht aus folgenden Modellen:

- Modelle HMD110/112 (rF und T) für den Einbau in Lüftungsrohre
- Temperaturmesswertgeber TMD110 (T) für den Einbau in Rohre
- Modelle HMW110/112 (rF und T) für die Wandmontage
- Temperaturmesswertgeber TMW110 (T) für die Wandmontage
- Modelle HMS110/112 (rF und T) für den Außeneinsatz
- TMI110 Modelle (T) zum Messen von Heiz-/Kühlwassertemperaturen

Die Messwertgeber können in folgenden Ausführungen bestellt werden:

- Modelle mit Stromschleifenschnittstelle und 2-Leiter-Stromausgängen für Feuchte (sofern relevant) und Temperatur
- Separat gespeiste Modelle mit RS-485 Modbus RTU-Ausgang

HMD112, HMW112 und HMS112 sind Standardmodelle, die werkseitig für die Ausgabe von Stromwerten konfiguriert sind. HMD110, TMD110, HMW110, TMW110, TMI110 und HMS110 sind werkseitig konfigurierbare Modelle, die mit kundenspezifischen Ausgangseinstellungen geliefert werden, einschließlich berechneter Feuchtegrößen (sofern relevant) und spezieller Skalierung der ausgegebenen Stromwerte oder werkseitig aktivierter Modbus RTU-Funktionalität.

Messwertgeber der Serie HMDW110 ermöglichen die Ausgabe zahlreicher Größen. Die gemessenen Größen sind relative Feuchte (rF) und Temperatur (T), während die anderen Größen von rF und T abgeleitet werden. Entnehmen Sie dem Typenschild auf dem Messwertgeber, welche Ausgangsparameter und welche Skalierung der Ausgangskanäle dieser unterstützt.

Messgröße	Symbol	Einheit	Beschreibung
Temperatur	Т	°C	Temperatur in Celsius oder Fahrenheit.
		°F	
Relative Feuch- te	rF	%	Verhältnis des Partialdrucks von Wasserdampf in der Luft zum Sättigungsdampfdruck der Luft bei der aktuellen Tem- peratur.
Taupunkt	T _{d/f}	°C °F	Temperatur, bei der Wasserdampf in der Luft beim aktuellen Druck als Wasser kondensiert. Wenn der Taupunkt unter 0 °C liegt, gibt der Messwertgeber den Frostpunkt (T_f) anstelle des Taupunkts aus.
Enthalpie	h	kJ/kg BTU/lb	Summe der internen Energie eines thermodynamischen Systems.

Tabelle 6 Ausgabegrößen der Serie HMDW110

Messgröße	Symbol	Einheit	Beschreibung
Feuchttempera- tur	Τ _w	°C °F	Die Minimaltemperatur, die unter den aktuellen Bedingungen durch Verdunstungskühlung erreicht werden kann.

Das Datenblatt und das Benutzerhandbuch (Englisch) zur Serie HMDW110 sind auf der Produktseite www.vaisala.com/hmdw110 sowie im Dokumentationsportal docs.vaisala.com verfügbar.

Installation von HMD110/112 und TMD110

- Kreuzschlitzschraubendreher (Pozidriv) mittlerer Größe für die Schrauben an Abdeckung und Flansch
- Kleiner Schlitzschraubendreher für die Schraubklemmen
- Bohrmaschine mit 2,5- und 13-mm-Bohrern für die Montagebohrungen
- Werkzeuge zum Schneiden und Abisolieren von Kabeln
- 19-mm-Gabelschlüssel zum Anziehen der Kabelverschraubung

- 1. Entfernen Sie die gelbe Transportschutzkappe und bauen Sie den Befestigungsflansch vom Messwertgeber ab.
 - 2. Zeichnen Sie Position und Größe der Montagebohrungen auf der Seite des Rohrs mit dem Flansch an.
 - 3. Bohren Sie die Montagebohrungen in das Rohr. Befestigen Sie den Montageflansch mit den beiden mitgelieferten Schrauben am Rohr.

4. Schieben Sie die Sonde des Messwertgebers durch den Flansch in das Rohr. Die Sonde muss so weit eingeführt werden, dass sich der Sensor in der Mitte des Rohrs befindet.

Abbildung 13 Zentrieren von HMD110/112 und TMD110 im Rohr

- 5. Befestigen Sie den Messwertgeber am Flansch, indem Sie die Schraube, die die Sonde in Position hält, am Flansch festziehen.
- 6. Öffnen Sie die Abdeckung des Messwertgebers und führen Sie die Kabel durch die Kabelverschraubungen.

Schließen Sie die Drähte gemäß der Verdrahtungsanleitung an die Schraubklemmen an.

7. Ziehen Sie die Kabelverschraubung(en) fest und schließen Sie die Abdeckung des Messwertgebers.

Installation von HMW110/112 und TMW110

Kleiner Schlitzschraubendreher für die Schraubklemmen
 Zwei Montageschrauben: Ø ≤ 3,5 mm, Kopf Ø ≤ 8 mm

Kreuzschlitzschraubendreher (Pozidriv) mittlerer Größe für die Schrauben der

 In Abhängigkeit vom Material der Wand und vom verwendeten Schraubentyp müssen Sie gegebenenfalls eine Bohrmaschine mit geeignetem Bohrer

Abbildung 14 Installation von HMW110/112 und TMW110

Abdeckung

- Öffnen Sie die Abdeckung des Messwertgebers und befestigen Sie den Messwertgeber mit zwei Schrauben (nicht im Lieferumfang enthalten) an der Wand. Sonde und Kabelverschraubung müssen nach unten zeigen.
 - 2. Öffnen Sie die Abdeckung des Messwertgebers und führen Sie das Kabel durch die Kabelverschraubung.

Schließen Sie die Drähte gemäß der Verdrahtungsanleitung an die Schraubklemmen an.

- 3. Ziehen Sie die Kabeldurchführung fest und schließen Sie die Abdeckung des Messwertgebers.
- 4. Nehmen Sie die gelbe Transportschutzkappe von der Sonde ab.

HMS110/112 Installation

- Kreuzschlitzschraubendreher (Pozidriv) mittlerer Größe
- Kleiner Schlitzschraubendreher für die Schraubklemmen
- Werkzeuge zum Schneiden und Abisolieren von Kabeln

• 19-mm-Gabelschlüssel zum Anziehen der Kabelverschraubung Weitere Werkzeuge für Rohrmastmontage:

• Kabelbinder zum Befestigen des Kabels am Rohrmast

Weitere Werkzeuge für Wandmontage:

- Bohrer und Bits
- Schrauben (2 Stück, Ø < 5,5 mm) und Dübel
- Kabelklemmen zum Befestigen des Kabels an der Wand
- 1. Lösen Sie die sechs Schrauben der Abdeckung des Messwertgebers.
 - 2. Führen Sie Strom- und Signalkabel durch die Kabeldurchführung und schließen Sie die Drähte gemäß der Verdrahtungsanleitung an die Schraubklemmen an:
 - Verdrahten von Geräten mit Analogausgang (Seite 33)
 - Verdrahten von Geräten mit Modbus-Ausgang (Seite 35)

Zur Anordnung der Schraubklemmen siehe Komponentenplatine der Serie HMDW110 (Seite 31).

3. Korrigieren Sie die Kabellänge zwischen Kabeldurchführung und Klemmenblöcken.

Kürzen Sie das Kabel so weit, dass die Abdeckung geschlossen werden kann, ohne dass eine Kabelschleife im Messwertgeber entsteht.

4. Ziehen Sie die verdrahteten Schraubklemmenblöcke von der Komponentenplatine ab.

5. Befestigung am Rohrmast:

- a. Verwenden Sie die mitgelieferte Schelle und die Schrauben, um den Messwertgeber an einem Rohrmast zu montieren.
- b. Ziehen Sie die Einstellschraube in der mittleren Bohrung der Schelle fest, um zu verhindern, dass sich der Messwertgeber am Rohrmast dreht.

6. Befestigung an der Wand:

- a. Bohren Sie zwei Dübellöcher in einem Abstand von 100 mm.
- b. Setzen Sie die Dübel in die Bohrungen ein.
- c. Befestigen Sie den Messwertgeber mit zwei Schrauben ausreichender Länge.

7. Stecken Sie die Schraubklemmenblöcke auf, schließen Sie die Abdeckung und ziehen Sie die Schrauben fest.

8. Befestigen Sie das Kabel mit einem Kabelbinder am Rohrmast oder mit Kabelklemmen an der Wand. Lassen Sie etwas Kabel von der Kabelverschraubung nach unten hängen, um zu verhindern, dass Wasser am Kabel entlang in den Messwertgeber läuft.

Komponentenplatine der Serie HMDW110

Die Komponentenplatinen von Messwertgebern der Serie HMDW110 unterstützen zwei Ausgabemodi: Modbus-Modus (RS-485) und Analogmodus (Stromausgang). Der Ausgangstyp wird beim Bestellen des Geräts ausgewählt. Beachten Sie das Typenschild des Geräts, um den gewählten Ausgangstyp zu ermitteln.

Die Komponentenplatinen besitzen außerdem eine Serviceschnittstelle für Konfiguration und Kalibrierung.

Abbildung 16 Komponentenplatine der nur für Temperaturmessungen ausgelegten Modelle TMD110, TMW110 und TMI110

- Klemmenblock f
 ür Stromschleifenausg
 änge (4 ... 20 mA). Muss getrennt werden, wenn der Messwertgeber
 über die RS-485-Verbindung im unteren Klemmenblock (Klemmen 1 ... 4) gespeist wird.
- 2 Serviceschnittstellenanschluss (4-polig, M8)
- 3 Klemmenblock für RS-485-Ausgang. Für Modbus-Verbindung.

Um die Montage zu erleichtern, können die Klemmenblöcke von der Komponentenplatine abgezogen werden. Dadurch werden bei Verwendung der Serviceschnittstelle zugleich der Messwertgeber von der Stromversorgung und die RS-485-Verbindung getrennt.

i

Trennen Sie vor Verwendung des Messwertgebers im Modbus-Modus die Klemmen 5 ... 8 im Klemmenblock, um zu verhindern, dass Erdschleifen die Messungen beeinträchtigen. Der für die Modbus-Kommunikation im unteren Klemmenblock verwendete RS-485-Anschluss speist den Messwertgeber.

Herstellen einer Verbindung zur Serviceschnittstelle

Vor dem Herstellen der Verbindung des Messwertgebers mit einem PC:

- Wenn der Klemmenblock mit den Klemmen 5 ... 8 verdrahtet ist, ziehen Sie ihn ab. Dadurch wird der Messwertgeber von der Speisespannung getrennt und mögliche Geräteschäden durch Erdschleifen werden verhindert. Die Positionen der Klemmenblöcke und der Serviceschnittstelle werden in Komponentenplatine der Serie HMDW110 (Seite 31) gezeigt.
- Wenn der andere Klemmenblock verdrahtet ist (Klemmen 1 ... 4), ziehen Sie ihn ebenfalls heraus. Dies verhindert eine Störung Ihrer Verbindung durch die Kommunikation zwischen dem Messwertgeber und dem Fernanzeigefeld RDP100 oder dem Modbus (RS-485)-Host.

Die Serviceschnittstelle ist für temporäre Verbindungen zum Messwertgeber gedacht. Sie kann für Konfiguration, Kalibrierung und Fehlerdiagnose mit einem Computer mit Windows-Betriebssystem verwendet werden. Verwenden Sie die Software Vaisala Insight, um die Verbindung zum Messwertgeber herzustellen. Außerdem benötigen Sie ein USB-Kabel für die Verbindung zum Computer von Vaisala (Bestellnummer 219690).

Die RS-485-Leitung der Serviceschnittstelle wird gemeinsam mit der Verbindung zum RS-485 Modbus-Ausgang/Ausgang des Fernanzeigefeldes RDP100 verwendet. Der Serviceschnittstellenanschluss M8 ist ein zusätzlicher Anschluss, der den Zugriff vereinfacht.

Die Software Insight können Sie unter www.vaisala.com/insight herunterladen.

Weitere Informationen und Beispiele zur Software Vaisala Insight und zu seriellen Befehlen finden Sie im *HMDW110 Series User Guide (M211726EN)*, verfügbar unter www.vaisala.com/hmdw110.

Verdrahten des HMDW110

Verdrahten von Geräten mit Analogausgang

Messwertgeber der Serie HMDW110 wurden für Speisespannungen von 10 … 28 VDC entwickelt. Die mindestens erforderliche Spannung hängt wie unten dargestellt vom Schleifenwiderstand (0 … 600 Ω) ab.

Abbildung 17 Betriebsbereich der Speisespannung für die Serie HMDW110

Wenn die Messwertgeber der Serie HMDW110 mit Analogausgang bestellt werden, müssen Sie immer die erste Stromschleife (Klemmen 5 und 6) zum Speisen des Messwertgebers verwenden. Bei den Modellen HMD110/112, HMW110/112 und HMS110/112 ist das Anschließen der zweiten Stromschleife (Klemmen 7 und 8) optional.

Abbildung 19 Verdrahtung von TMI110, TMW110 und TMD110, Analogausgang

Verdrahten beider Stromschleifen mit einer Stromversorgung

Abbildung 20 Verdrahtung von HMD110/112, HMW110/112 und HMS110/112 mit einer Stromversorgung

Verdrahten des HMDW110 mit dem Fernanzeigefeld RDP100

Abbildung 21 HMDW110 Verdrahtung mit dem Fernanzeigefeld RDP100

Sie müssen immer die Stromschleife für die Feuchtemessung (**HUM**, Klemmen 5 und 6) anschließen, damit der Messwertgeber gespeist wird. Das Anschließen der Stromschleife für die Temperaturmessung (Klemmen 7 und 8) ist optional.

Verbinden Sie das Fernanzeigefeld RDP100 mit den Klemmen 1... 4. Der Messwertgeber der Serie HMDW110 speist Strom und Daten in das RDP100.

Die Klemmen 1... 4 dürfen bei Verwendung der Analogausgänge nur zum Verbinden des RDP100 (optional) verwendet werden. Wenn das RDP100 nicht verwendet wird, müssen die Klemmen 1... 4 unbelegt bleiben. Andernfalls können die Analogausgänge falsche Messwerte ausgeben.

Der **GND**-Eingang des RDP100 darf nur an Klemme 3 des Messwertgebers HMDW110 angeschlossen werden. Sie darf nicht mit einem lokalen Massepotenzial verbunden werden.

Bei Verwendung des RDP100 mit Messwertgebern der Serie HMDW110 darf die Steckbrücke **Extpwr** auf der RDP100-Komponentenplatine nicht gesetzt sein.

Verdrahten von Geräten mit Modbus-Ausgang

Verwenden Sie die Klemmen 1... 4 für Stromversorgung und Modbus-Ausgang. Neben den RS-485-Datenkabeln muss der Massedraht zwischen dem RS-485-Host und dem Messwertgeber angeschlossen werden.

Abbildung 22 Verdrahtung von Messwertgebern der Serie HMDW110, Modbus-Ausgang

Verbinden Sie die Analogausgänge (Klemmen 5 ... 8) nicht gleichzeitig, wenn Speisespannung und/oder Modbus-Ausgang an die Klemmen 1 ... 4 angeschlossen sind. Werden beide Klemmengruppen gleichzeitig verbunden, kann es aufgrund der möglicherweise entstehenden Erdschleife zu fehlerhaften analogen Messwerten kommen.

Modbus-Kommunikation

Der Zugriff auf mit der Konfigurationsoption Modbus bestellte Messwertgeber erfolgt über das serielle Modbus-Kommunikationsprotokoll. Die unterstützte Modbus-Variante ist Modbus RTU (Serial Modbus) über die RS-485-Schnittstelle.

Beschreibung	Standardwert
Baudrate (serielle Übertragung)	19200
Parität	Ν
Anzahl der Datenbits	8
Anzahl Stoppbits	2
Modbus-Geräteadresse	240
Serielle Verzögerung	0
Kommunikationsmodus	Modbus RTU

Tabelle 7 Standardeinstellungen für serielle Modbus-Kommunikation

Verwenden Sie die Software Vaisala Insight, um die seriellen Modbus-Kommunikationseinstellungen bei Bedarf zu ändern. Die Software Insight können Sie unter www.vaisala.com/insight herunterladen.

Datencodierung

Register mit 32-Bit-Gleitkommaformat werden mittels "binary32"-Codierung (definiert in IEEE 754, auch als "Gleitkommaformat einfacher Genauigkeit" bezeichnet) codiert.

Die niederwertigen 16 Bits einer Gleitkommazahl werden in dem in der Tabelle angegebenen Modbus-Register abgelegt, während die 16 höchstwertigen Bits im Register mit der Nummer/ Adresse + 1 abgelegt werden (gemäß Open Modbus TCP Specification, Release 1.0). Diese Word-Reihenfolge wird auch als "Little-Endian-" oder "Modicon"-Reihenfolge bezeichnet.

Beim Lesen von Messdatenregistern mit falscher Gleitkommaformat-Einstellung können sich gelegentlich richtig wirkende Werte ergeben. Es wird dringend empfohlen, zunächst das Register mit der Nummer 7938 (Gleitkommatest) auszulesen, um zu ermitteln, ob das Gleitkommaformat im Modbus-Hostsystem richtig konfiguriert wurde.

Prüfwertregister

Lesen Sie die bekannten Prüfwerte aus den Prüfregistern, um die Funktionalität der Modbus-Implementierung zu verifizieren.

Tabelle 8 Modbus-Prüfregister (schreibgeschützt)

Registernummer (Dezimal)	Adresse (Hexa- dezimal)	Registerbeschreibung	Datenformat	Prüfwert
7937	1F00 _{hex}	Prüfung vorzeichenbe- hafteter Integer	16-Bit-Integer	-12345
Registernummer (Dezimal)	Adresse (Hexa- dezimal)	Registerbeschreibung	Datenformat	Prüfwert
-----------------------------	----------------------------	----------------------	----------------------------	---------------------
7938	1F01 _{hex}	Gleitkommaprüfung	32-Bit-Gleit- komma	-123.45
7940	1F03 _{hex}	Stringprüfung	ASCII-String, 7 Zeichen	String "-123.45"

Messdatenregister

Der Zugriff auf nicht verfügbare (temporär fehlende) Messdaten generiert keine Exception. Stattdessen wird der Wert für "nicht verfügbar" (ein stiller NaN-Wert) zurückgegeben.

Die Messwertausgabe wird in metrischen Einheiten angezeigt. Wenn bei Verwendung von Modbus nicht metrische Werte benötigt werden, sind die Einheiten im Modbus-Master (SPS) mit den üblicherweise verfügbaren Skalierungsfunktionen zu konvertieren.

Tabelle 9 HMD110/112, HMW110/112 und HMS110/112 Modbus-Messwertdatenregister (schreibgeschützt)

Registernummer (Dezimal)	Adresse (Hexa- dezimal)	Registerbeschreibung	Datenformat	Einheit
1	0000 _{hex}	Relative Feuchte	32-Bit-Gleit- komma	% rF
3	0002 _{hex}	Temperatur	32-Bit-Gleit- komma	°C
9	0008 _{hex}	Taupunkt-/Frostpunkt- temperatur	32-Bit-Gleit- komma	°C
19	0012 _{hex}	Feuchttemperatur	32-Bit-Gleit- komma	°C
27	001A _{hex}	Enthalpie	32-Bit-Gleit- komma	kJ/kg

Tabelle 10 TMI110 Modbus-Messdatenregister (schreibgeschützt)

Registernummer (Dezimal)	Adresse (Hexa- dezimal)	Registerbeschreibung	Datenformat	Einheit
3	0002 _{hex}	Temperatur	32-Bit-Gleit- komma	°C

Software Vaisala Insight

Die PC-Software Vaisala Insight kann verwendet werden, um Messwertgeber der Serie HMDW110 intuitiv zu prüfen, zu konfigurieren und zu justieren, ohne dass serielle Befehle eingegeben werden müssen. Der Messwertgeber kann unter Verwendung eines USB-Kabels für Computerverbindungen von Vaisala (Bestellnummer 219690) mit der Software Insight verbunden werden.

Die Software Insight bietet folgende Möglichkeiten:

- Geräteinformationen und -status anzeigen
- Echtzeitmesswerte anzeigen
- Einstellungen für serielle Kommunikation, Filterfaktoren und Analogausgangsparameter und -skalierung konfigurieren
- Gerät einstellen und kalibrieren

Die Software Insight führt Sie durch das Ändern der Einstellungen und das Durchführen von Justierungen am Messwertgeber. Lesen Sie sorgfältig die Kapitel zu Kalibrierung und Justierung im *HMDW110 Series User Guide* (M211726EN), bevor Sie Justierungen am HMDW110 vornehmen.

Die Software Insight können Sie unter www.vaisala.com/insight herunterladen.

Messwertgeber der Serie HMDW110 unterstützen Insight ab Softwareversion 2.2.3.

Herstellen der Verbindung zur Software Insight

• USB-Verbindungskabel (Bestellnummer 219690)

ACHTUNG! Beim gleichzeitigen Anschließen mehrerer Geräte müssen Sie beachten, dass der Computer über die USB-Anschlüsse möglicherweise nicht genügend Leistung bereitstellen kann. Verwenden Sie einen extern gespeisten USB-Hub, der > 2 W für jeden Anschluss liefern kann.

Vor dem Herstellen der Verbindung des Messwertgebers mit einem PC:

- Wenn der Klemmenblock mit den Klemmen 5 ... 8 verdrahtet ist, ziehen Sie ihn heraus. Dadurch wird der Messwertgeber von der Speisespannung getrennt und mögliche Geräteschäden durch Erdschleifen werden verhindert. Die Positionen der Klemmenblöcke und der Serviceschnittstelle können Sie der Beschreibung der Platine entnehmen.
- Wenn der andere Klemmenblock verdrahtet ist (Klemmen 1... 4), ziehen Sie ihn ebenfalls heraus. Dies verhindert Störungen der Verbindung durch die Kommunikation zwischen Messwertgeber und Modbus-Host (RS-485).

1. Starten Sie die Software Insight.

- 2. Verbinden Sie das USB-Kabel mit einem freien USB-Anschluss am PC.
- 3. Schließen Sie das USB-Kabel an die Serviceschnittstelle des Messwertgebers an.
- 4. Warten Sie, bis Insight den Messwertgeber erkannt hat.

Wenn der Messwertgeber nicht erkannt wird, ziehen Sie das Vaisala-USB-Kabel von der Serviceschnittstelle des Messwertgebers ab und stecken Sie es dann wieder ein.

Technischer Support

Wenden Sie sich unter helpdesk@vaisala.com an den technischen Support von Vaisala. Geben Sie mindestens folgende Informationen an (sofern relevant):

- Produktname, Modell und Seriennummer
- Software-/Firmwareversion
- Name und Standort der Installation

• Name und Kontaktinformationen eines Technikers für weitere Auskünfte Weitere Informationen finden Sie unter www.vaisala.com/support.

Gewährleistung

Unsere Standardgewährleistungsbedingungen finden Sie unter www.vaisala.com/warranty.

Die Gewährleistung deckt keine Verschleißschäden, Schäden infolge außergewöhnlicher Betriebsbedingungen, Schäden infolge unzulässiger Verwendung oder Montage oder Schäden infolge nicht genehmigter Modifikationen ab. Einzelheiten zum Gewährleistungsumfang für bestimmte Produkte enthalten der zugehörige Liefervertrag und die Verkaufsbedingungen.

Recycling

Recyceln Sie alle einschlägigen Werkstoffe unter Einhaltung der örtlichen Vorschriften.

Présentation de la série HMDW110

Les transmetteurs d'humidité et de température Vaisala HUMICAP® de la série HMDW110 mesurent l'humidité relative et la température dans diverses applications HVAC. Cette série comprend des transmetteurs pour montage en gaine, des transmetteurs muraux classés IP65, des transmetteurs de température submersibles et des transmetteurs pour installation extérieure avec des protections anti-rayonnement intégrées. Les transmetteurs peuvent être commandés avec un écran en option ou sans écran.

Cette série comprend les modèles suivants :

- Modèles HMD110/112 (HR+T) pour installation dans des gaines de ventilation
- Transmetteur de température TMD110 (T) pour installation dans des gaines
- Modèles HMW110/112 (HR+T) pour installation murale
- Transmetteur de température TMW110 (T) pour installation murale
- Modèles HMS110/112 (HR+T) pour utilisation en extérieur
- Modèles de TMI110 (T) pour mesure des températures de l'eau de chauffage/ refroidissement

Les transmetteurs HMDW110 peuvent être commandés comme :

- Modèles alimentés par boucle, avec des sorties courant à deux fils pour l'humidité (le ca échéant) et la température.
- modèles alimentés séparément, avec une sortie Modbus RTU RS-485

Les modèles HMD112, HMW112 et HMS112 sont des modèles standard préconfigurés en usine avec une sortie courant. Les modèles HMD110, TMD110, HMW110, TMW110, TMI110 et HMS110 sont des modèles pouvant être configurés en usine, qui sont livrés avec des réglages de sortie spécifiques au client, notamment les paramètres d'humidité calculée (le cas échéant), l'étalonnage des sorties courant ou une fonctionnalité Modbus RTU activée en usine.

Les transmetteurs de la série HMDW110 offrent de nombreux paramètres de sortie. L'humidité relative (HR) et la température (T) sont les paramètres mesurés. Les autres paramètres sont calculés en fonction des paramètres HR et T. L'étiquette du type de votre transmetteur vous permet de vérifier ses paramètres de sortie et l'étalonnage des canaux de sortie.

Paramètre	Symbo- le	unités	Description
Temperature (Tem- pérature)	Т	°C °F	Température en degrés Celsius ou Fahrenheit.
Humidité relative tolérée en fonction- nement	HR	%	Rapport entre la pression partielle de la vapeur d'eau dans l'air et la pression de saturation de vapeur de l'air à une température donnée.
Point de rosée	T _{d/f}	°C °F	Température à laquelle la vapeur d'eau dans l'air se con- dense en eau en fonction de la pression. Lorsque le point de rosée est inférieur à 0 °C, le transmetteur indique le point de givre (T_f) au lieu du point de rosée.
Enthalpie	h	kJ/kg BTU/lb	Somme de l'énergie interne d'un système thermodynamique.

Tableau 11 Paramètres de sortie des transmetteurs de la série HMDW110

Paramètre	Symbo- le	unités	Description
Température de	Τ _w	°C	La température minimum que le refroidissement par éva-
bulbe humide		°F	poration peut atteindre dans les conditions actuelles.

La fiche technique et le guide de l'utilisateur (en anglais) de la série HMDW110 sont disponibles sur la page du produit à l'adresse www.vaisala.com/hmdw110 et à partir du portail de documentation docs.vaisala.com.

Installation du HMD110/112 et du TMD110

- Tournevis cruciforme (Pozidriv) de taille moyenne pour les vis du couvercle et de la bride
- Petit tournevis à tête plate pour borniers à vis
- Perceuse avec forets de 2,5 mm et 13 mm pour perçage des orifices d'installation
- Outils pour couper et dénuder les fils
- Clé plate de 19 mm pour serrage du presse-étoupe

- 1. Retirez le capuchon de protection de transport jaune et séparez la bride de fixation du transmetteur.
- 2. Utilisez la bride pour marquer l'emplacement et la taille des orifices d'installation sur le côté de la conduite.
- 3. Percez les orifices d'installation dans la conduite. Fixez la bride de fixation sur la conduite à l'aide des deux vis (fournies).

4. Enfoncez la sonde du transmetteur à travers la bride et dans la conduite. La sonde doit aller assez loin pour que le capteur se trouve au milieu de la conduite.

Figure 24 Centrage du HMD110/112 et du TMD110 à l'intérieur de la conduite

- 5. Fixez le transmetteur sur la bride en serrant la vis de la bride qui maintient la sonde en place.
- Ouvrez la protection du transmetteur et faites passer les câbles dans les presse-étoupes.
 Connectez les câbles aux borniers à vis en respectant les instructions de câblage.
- 7. Serrez le(s) presse-étoupe(s) et fermez le couvercle du transmetteur.

Installation du HMW110/112 et du TMW110

Figure 25 Installation du HMW110/112 et du TMW110

- 1. Ouvrez le couvercle et utilisez deux vis (non fournies) pour fixer le transmetteur au mur. La sonde et le presse-étoupe doivent être dirigés vers le bas.
 - 2. Ouvrez la protection du transmetteur et faites passer le câble dans le presse-étoupe.

Connectez les câbles aux borniers à vis en respectant les instructions de câblage.

- 3. Serrez le presse-étoupe et fermez le couvercle du transmetteur.
- 4. Retirez le capuchon de protection de transport jaune de la sonde.

Installation du HMS110/112

- Tournevis cruciforme (Pozidriv) de taille moyenne
- Petit tournevis à tête plate pour borniers à vis
- Outils pour couper et dénuder les fils

• Clé plate de 19 mm pour serrage du presse-étoupe Outils supplémentaires pour l'installation sur mât :

- Attaches autobloquantes pour fixer le câble au mât
- Outils supplémentaires pour l'installation murale :
- · Perceuse et forets
- Vis (2 pièces, Ø < 5,5 mm) et chevilles
- Serre-câbles pour fixer le câble au mur
- 1. Desserrez les six vis qui maintiennent le couvercle du transmetteur.
 - 2. Faites passer le câble d'alimentation et de signal par le presse-étoupe, puis connectez les câbles aux borniers à vis en respectant les instructions de câblage :
 - Dispositifs de câblage avec sortie analogique (page 51)
 - Dispositifs de câblage avec sortie Modbus (page 53)

Pour la disposition des borniers à vis, consultez la section Cartes de composants de la série HMDW110 (page 49).

3. Ajustez la longueur de câble entre le presse-étoupe et les borniers.

Faites en sorte que le câble soit suffisamment court pour fermer le couvercle sans laisser de boucle de câble dans le transmetteur.

4. Déconnectez les borniers à vis câblés en les extrayant du panneau de contact.

5. Montage de l'installation sur mât :

- a. Utilisez le collier et les vis fournis pour monter le transmetteur sur un mât.
- b. Afin d'empêcher le transmetteur de tourner sur le mât, serrez la vis d'arrêt dans l'orifice central du collier.

6. Montage de l'installation murale :

- a. Percez deux orifices séparés de 100 mm pour les chevilles.
- b. Placez les chevilles dans les orifices.
- c. Montez le transmetteur à l'aide de deux vis d'une longueur suffisante.

7. Connecter les borniers à vis, fermez le couvercle et serrez les vis.

 Fixez le câble au mât à l'aide d'une attache autobloquante, ou au mur à l'aide de serrecâbles. Laissez pendre du câble du presse-étoupe afin d'éviter que de l'eau n'entre dans le transmetteur le long du câble.

Cartes de composants de la série HMDW110

Les cartes de composants des transmetteurs de la série HMDW110 ont 2 types de sortie : Mode Modbus (RS-485) et mode analogique (sorties courant). Le type de sortie est sélectionné lors de la commande de l'appareil. Consultez l'étiquette du dispositif pour connaître le type de sortie choisie.

Les cartes de composants disposent également d'un port de service pour la configuration et l'étalonnage.

Figure 27 Carte de composants des modèles TMD110, TMW110 et TM1110, avec mesure de température uniquement

- 1 Bornier pour sortie(s) en boucle de courant 4 ... 20 mA. Doit être déconnecté lorsque le transmetteur est alimenté par la connexion RS-485 dans le bornier inférieur (bornes 1 ... 4).
- 2 Connecteur du port de service (M8 4 broches)
- 3 Bornier pour sortie RS-485. Pour connexion Modbus.

Vous pouvez extraire les borniers du panneau de contact pour une installation plus facile et pour déconnecter le transmetteur de l'alimentation et la borne RS-485 lorsque vous utilisez le port de service.

Avant d'utiliser le transmetteur en mode Modbus, débranchez toujours le bornier des bornes 5 ... 8 pour empêcher les effets de boucle de terre sur les mesures. Le connecteur RS-485 utilisé pour la communication Modbus dans le bornier inférieur alimentera le transmetteur.

Connexion au port de service

Avant de connecter le transmetteur à un PC :

- Si le bornier des bornes 5 ... 8 est câblé, extrayez-le. Cela déconnecte le transmetteur de la tension d'alimentation et empêche d'éventuels dommages pouvant être causés à l'équipement par des boucles de terre. Les emplacements des borniers et du port de service sont indiqués dans la section Cartes de composants de la série HMDW110 (page 49).
- Si l'autre bornier est câblé (bornes 1... 4), extrayez-le également. Cela permet d'éviter que la communication entre le transmetteur et l'écran d'affichage distant RDP100 ou l'hôte Modbus (RS-485) n'interfère avec votre connexion.

Le port de service est prévu pour une connexion temporaire au transmetteur. Vous pouvez l'utiliser pour la configuration, l'étalonnage, et le dépannage avec un ordinateur équipé du système d'exploitation Windows. Utilisez le logiciel Vaisala Insight pour vous connecter au transmetteur. Vous avez également besoin d'un câble USB Vaisala pour la connexion à l'ordinateur (code de commande 219690).

La liaison RS-485 du port de service est partagée avec la connexion à la sortie ModBus RS-485 / sortie vers l'écran d'affichage distant RDP100 ; le connecteur du port de service M8 est uniquement un connecteur supplémentaire destiné à en faciliter l'accès.

Téléchargez le logiciel Insight à l'adresse www.vaisala.com/insight.

Pour plus d'informations et d'exemples sur l'utilisation du logiciel Vaisala Insight et des commandes série, consultez le document *HMDW110 Series User Guide (M211726EN)*, disponible à l'adresse www.vaisala.com/hmdw110.

Câblage du HMDW110

Dispositifs de câblage avec sortie analogique

Les transmetteurs de la série HMDW110 sont conçus pour une plage de tensions d'alimentation 10 ... 28 V CC. La tension minimum dépend de la résistance de la boucle (0 ... 600 Ω), comme indiqué ci-dessous :

Pour les transmetteurs de la série HMDW110 avec sortie analogique, vous devez toujours connecter la première boucle de courant (bornes 5 et 6) pour alimenter le transmetteur. Avec les modèles HMD110/112, HMW110/112 et HMS110/112, la connexion de la deuxième boucle de courant (bornes 7 et 8) est facultative.

Figure 30 Câblage du TMI110, TMW110 et TMD110, sortie analogique

Câblage des deux boucles de courant avec une seule alimentation

Figure 31 Câblage du HMD110/112, HMW110/112 et HMS110/112 avec une seule alimentation

Câblage du HMDW110 avec afficheur distant RDP100

Figure 32 Câblage du HMDW110 avec afficheur distant RDP100

Vous devez toujours connecter la boucle de courant de mesure d'humidité (**HUM**, bornes 5 et 6) pour alimenter le transmetteur. La connexion de la boucle de mesure de courant de température (bornes 7 et 8) est facultative.

Connectez l'écran d'affichage distant RDP100 avec les bornes 1 ... 4. Le transmetteur de la série HMDW110 fournit à la fois l'alimentation et les données au RDP100.

Les bornes 1 ... 4 doivent être utilisées uniquement pour connecter le RDP100 (facultatif) lorsque vous utilisez les sorties analogiques. Si le RDP100 n'est pas utilisé, les bornes 1 ... 4 doivent rester déconnectées. Sinon, les sorties analogiques peuvent générer des résultats incorrects.

L'entrée **GND** du RDP100 doit être connectée uniquement à la borne 3 du transmetteur HMDW110. Elle ne doit pas être connectée à un potentiel de terre local.

i

Lorsque vous utilisez le RDP100 avec des transmetteurs de la série HMDW110, ne connectez pas le cavalier **Extpwr** au panneau de contact du RDP100.

Dispositifs de câblage avec sortie Modbus

Utilisez les bornes 1 ... 4 pour l'alimentation et la sortie Modbus. Outre les câbles des données RS-485, le câble commun (référence de terre) doit être connecté entre l'hôte RS-485 et le transmetteur.

Ne raccordez pas les sorties analogiques (bornes 5 ... 8) en même temps lorsque l'alimentation et/ou la sortie Modbus est connecté aux bornes 1 ... 4. La connexion simultanée des deux bornes peut engendrer des valeurs analogiques erronées provoqués par de possibles effets de boucle de terre.

Communication Modbus

Les transmetteurs commandés avec l'option de configuration Modbus sont accessibles via le protocole de communication série Modbus. La variante Modbus prise en charge est Modbus RTU (Modbus sérielle) via l'interface RS-485.

Description	Valeur par défaut
Débit binaire série	19200
Parité	Ν
Nombre de bits de données	8
Nombre de bits d'arrêt	2
Adresse du dispositif Modbus	240
Délai sériel	0
Mode de communication	Modbus RTU

Tableau 12 Paramètres de communication série Modbus par défaut

Utilisez le logiciel Vaisala Insight pour modifier les paramètres de communication Modbus série si nécessaire. Téléchargez le logiciel Insight à l'adresse www.vaisala.com/insight.

Codage de données

Les registres utilisant le format de données à « virgule flottante 32 bits » sont codés via l'encodage « binaire 32 » défini dans la norme IEEE 754 (aussi appelé « format à virgule flottante simple précision »).

Les 16 bits les moins significatifs d'un nombre à virgule flottante sont placés dans le registre Modbus indiqué dans le tableau, tandis que les 16 bits les plus significatifs sont placés dans le registre avec numéro/adresse + 1, comme indiqué dans la version 1.0 de la spécification Open Modbus TCP. Cet ordre d'octets est aussi appelé « little-endian » ou « Modicon ».

La lecture des registres de données de mesure avec un format de virgule flottante incorrect peut parfois entraîner des valeurs d'apparence correcte. Il est fortement recommandé de commencer par essayer de lire le registre numéro 7938 (test de virgule flottante) pour voir que vous avez configuré correctement le format de virgule flottante sur votre système hôte Modbus.

Registres de valeurs de test

Lisez les valeurs de test connues depuis les registres de test pour vérifier la fonctionnalité de votre intégration Modbus.

Tableau 13	Registres de test Modbus (lecture seule)	
------------	--	--

Numéro de regis- tre (décimal)	Adresse (hexa- décimale)	Description du registre	Format de don- nées	Valeur de test
7937	1F00 _{hex}	Test d'entier signé	entier 16 bits	-12345

Numéro de regis- tre (décimal)	Adresse (hexa- décimale)	Description du registre	Format de don- nées	Valeur de test
7938	1F01 _{hex}	Test de virgule flottante	Flottante 32 bits	-123.45
7940	1F03 _{hex}	Test de chaîne de texte	Chaîne ASCII de 7 caractères	Chaîne de tex- te « -123.45 »

Registres de données de mesure

L'accès à des données de mesure indisponibles (temporairement manquantes) ne génère pas d'exception. Une valeur « indisponible » (un NaN silencieux) est renvoyée à la place.

La sortie de mesure s'affiche en unités métriques. Si des valeurs non métriques sont nécessaires lors de l'utilisation de Modbus, les unités sont converties dans le maître Modbus (PLC) à l'aide des fonctions de mise à l'échelle généralement disponibles.

Tableau 14 Registres de données de mesure Modbus HMD110/112, HMW110/112 et HMS110/112 (lecture seule)

Numéro de regis- tre (décimal)	Adresse (hexa- décimale)	Description du registre	Format de don- nées	Unité
1	0000 _{hex}	Humidité relative	Flottante 32 bits	%HR
3	0002 _{hex}	Temperature (Tempéra- ture)	Flottante 32 bits	°C
9	0008 _{hex}	Température de point de rosée / point de givre	Flottante 32 bits	°C
19	0012 _{hex}	Température de bulbe humide	Flottante 32 bits	°C
27	001A _{hex}	Enthalpie	Flottante 32 bits	kJ/kg

Tableau 15 Registres de données de mesure Modbus TMI110 (lecture seule)

Numéro de regis- tre (décimal)	Adresse (hexa- décimale)	Description du registre	Format de don- nées	Unité
3	0002 _{hex}	Température (Tempéra- ture)	Flottante 32 bits	°C

Logiciel Vaisala Insight

Le logiciel pour PC Vaisala Insight peut être utilisé pour vérifier, configurer, et régler les transmetteurs de la série HMDW110 de manière intuitive, sans saisie d'aucune commande série. Le transmetteur peut être connecté au logiciel Insight à l'aide d'un câble USB Vaisala pour la connexion à l'ordinateur (code de commande 219690).

Avec le logiciel Insight, vous pouvez :

- Consulter les informations sur l'appareil et l'état.
- · Consulter les mesures en temps réel.
- Configurer les paramètres de communication série, le facteur de filtre et les paramètres de sortie analogique et de mise à l'échelle.
- Étalonner et régler le dispositif.

Le logiciel Insight vous guide au cours de la modification des paramètres et des réglages sur le transmetteur. Cependant, veuillez lire attentivement les chapitres sur l'étalonnage et le réglage dans le document *HMDW110 Series User Guide* (M211726EN) avant d'effectuer les réglages sur votre appareil HMDW110.

Téléchargez le logiciel Insight à l'adresse www.vaisala.com/insight.

Les transmetteurs de la série HMDW110 prennent en charge Insight à partir de la version logicielle 2.2.3 du transmetteur.

Connexion au logiciel Insight

- Ordinateur avec le logiciel Vaisala Insight installé
- Câble de connexion USB (code article 219690)

ATTENTION! Lorsque vous connectez plusieurs appareils en même temps, notez que votre ordinateur risque de ne pas être en mesure de fournir une alimentation suffisante via ses ports USB. Utilisez un hub USB à alimentation externe pouvant fournir plus de 2 W pour chaque port.

6

Avant de connecter le transmetteur à un PC :

 Si le bornier des bornes 5 à 8 est câblé, extrayez-le. Cela déconnecte le transmetteur de la tension d'alimentation et empêche d'éventuels dommages pouvant être causés à l'équipement par des boucles de terre. Pour les emplacements des borniers et du port de service, voir la description de la carte de composants.

• Si l'autre bornier est câblé (bornes 1... 4), extrayez-le également. Cela permet d'éviter que la communication entre le transmetteur et l'hôte Modbus (RS-485) n'interfère avec votre connexion.

- 1. Ouvrez le logiciel Insight.
 - 2. Branchez le câble USB à un port USB libre sur le PC.

- 3. Branchez le câble USB au port de service du transmetteur.
- 4. Attendez que le logiciel Insight détecte le transmetteur.

Si le transmetteur n'est pas détecté, débranchez et rebranchez le câble USB Vaisala au connecteur du port de service du transmetteur.

Assistance technique

Contactez l'assistance technique de Vaisala via helpdesk@vaisala.com. Veuillez nous communiquer au minimum les informations suivantes selon le cas :

- Nom du produit, modèle et numéro de série
- Logiciel/version du progiciel
- Nom et emplacement du site d'installation
- Nom et coordonnées d'une personne compétente sur le plan technique capable de fournir des informations complémentaires sur le problème
 Pour plus d'informations, voir www.vaisala.com/support.

Garantie

Pour connaître nos conditions de garantie standard, rendez-vous sur la page www.vaisala.com/warranty.

Veuillez noter qu'une telle garantie ne s'applique pas en cas de dommage dû à l'usure normale, à des conditions de fonctionnement exceptionnelles, à une négligence lors de la manipulation ou de l'installation, ou à des modifications non autorisées. Veuillez consulter le contrat d'approvisionnement applicable ou les conditions de vente pour obtenir des détails sur la garantie de chaque produit.

Recyclage

Recyclez tous les matériaux applicables conformément à la réglementation locale.

HMDW110 シリーズの説明

ヴァイサラ HUMICAP[®] HMDW110 シリーズ 湿度温度変換器は、さまざまな HVAC 用途にお いて相対湿度と温度を計測します。このシリーズでは、ダクト取り付けタイプ変換器、IP65 準拠の壁面取り付けタイプ変換器、液浸温度変換器、ラジエーションシールドー体型屋外 設置用変換器を取り揃えています。変換器は、オプションのディスプレイを付けたモデル か、ディスプレイのないモデルを注文することができます。

このシリーズは、以下のモデルで構成されています。

- ・空調ダクトへの取り付け用のHMD110/112モデル(相対湿度および温度)
- ・ダクトへの取り付け用のTMD110温度変換器(温度)
- ・壁への取り付け用のHMW110/112モデル(相対湿度および温度)
- ・壁への取り付け用のTMW110 温度変換器(温度)
- ・ 屋外用のHMS110/112モデル(相対湿度および温度)
- ・加熱および冷却水温の計測用のTMI110モデル(温度)

変換器は、以下の出力モデルをご注文いただけます。

- ・ループ電源供給モデル、湿度(該当する場合)と温度用の2線式電流出力
- ・ 個別電源、Modubs出力モデル(RS-485 Modbus RTU出力)

HMD112、HMW112、および HMS112 は標準設定の電流出力モデルです。HMD110、 TMD110、HMW110、TMW110、TMI110、および HMS110 は工場で設定可能なモデルで、 計算する湿度関連パラメータ(該当する場合)や電流出力の特殊なスケーリング、または Modbus RTU 出力など、お客様固有の出力設定を行って納入されます。

HMDW110 シリーズ 変換器では、多数のパラメータが出力設定可能です。計測されるパラ メータは相対湿度(RH)と温度(T)で、その他のパラメータは相対湿度と温度から計算 されます。変換器側面のラベルを確認し、出力チャンネルの出力パラメータとスケーリン グを確認してください。

パラメータ	記号	単位	説明
温度	Т	°C	摂氏または華氏の温度。
		°F	
相対湿度	RH	%	現在温度での空気の飽和蒸気圧に対する、空気中の水蒸気の分 圧の割合。
露点	T _{d/f}	°C °F	空気中の水蒸気が現在の気圧で結露する温度。露点が0℃未満 の場合、変換器では露点の代わりに霜点(T _f)が出力されます。
エンタルピー	h	kJ/kg	熱力学系の内部エネルギーの合計。
		BTU/lb	
湿球温度	Tw	°C	現在の条件で気化冷却によって到達可能な最小温度。
		۴	

表 16 HMDW110シリーズの出力パラメーター

HMDW110 シリーズのデータシートと取扱説明書(英語)は、製品ページ (www.vaisala.com/hmdw110) およびドキュメントポータル (docs.vaisala.com) から入手できます。

HMD110/112とTMD110の取り付け

- カバーとフランジのネジ用の中型プラスドライバー(Pozidriv)
- ネジ端子用の小型マイナスドライバー
- ・取り付け穴をあけるためのドリルおよび2.5mmと13mmのビット
- 配線を切断したり被覆を剥いだりするための工具
- ケーブルグランドを締め付けるための19mmのオープンエンドレンチ

図 34 HMD110/112とTMD110の取り付け

- ▶ 1. 黄色の輸送保護キャップを取り外し、変換器から締結フランジを外します。
 - 2. フランジを使用して、ダクト側面に取り付け穴の場所とサイズがわかるようにマークを付けます。
 - 3. ドリルを使用してダクトに取り付け穴をあけます。2本のネジ(付属)で締結フランジ をダクトに固定します。

 変換器のプローブをフランジからダクト内に押し込みます。センサがダクトの中央に 配置されるようにプローブを十分に押し込む必要があります。

図 35 ダクト内中央に配置されたHMD110/112とTMD110

- 5. プローブを正しい位置に保持しているフランジのネジを締め付け、変換器をフランジ に固定します。
- 変換器カバーを開き、ケーブルグランドからケーブルを通します。
 配線手順に従って、配線をネジ端子に接続します。
- 7. ケーブルグランドを締め付け、変換器カバーを閉じます。

HMW110/112とTMW110の取り付け

- カバーネジ用の中型プラスドライバー (Pozidriv)
- ネジ端子用の小型マイナスドライバー
- 2本の取り付けネジ: $\emptyset \le 3.5$ mm、ヘッド $\emptyset \le 8$ mm。
- ・壁面の材質やネジの種類によっては、ネジ用の取り付け穴をあけるためのドリルと適切なドリルビットが必要となる場合があります。
- 配線を切断したり被覆を剥いだりするための工具
- ケーブルグランドを締め付けるための19mmのオープンエンドレンチ

図 36 HMW110/112とTMW110の取り付け

- 1. 変換器カバーを開き、2本のネジ(付属していません)を使用して変換器を壁に取り付けます。プローブとケーブルグランドは下向きに取り付ける必要があります。
 - 2. 変換器カバーを開き、ケーブルグランドからケーブルを通します。

配線手順に従って、配線をネジ端子に接続します。

- 3. ケーブルグランドを締め付け、変換器カバーを閉じます。
- 4. プローブから黄色の輸送保護キャップを取り外します。

HMS110/112の取り付け

- ・中型プラスドライバー(Pozidriv)
 ・ネジ端子用の小型マイナスドライバー
 ・配線を切断したり被覆を剥いだりするための工具
 ・ケーブルグランドを締め付けるための19mmのオープンエンドレンチ ポールを取り付けるための追加の工具:
 ・ケーブルをポールに固定するためのジップタイ
 壁に取り付けるための追加の工具:
 ・ドリルとビット
 ・ネジ(2個、Ø5.5 m未満)と壁面コンセント
 ・ケーブルを壁に固定するためのケーブルクリップ
- 1. 変換器カバーを留めている6本のネジを外します。
 - ケーブルグランドから電源および信号ケーブルを通し、以下の配線手順に従って、配線をネジ端子に接続します。
 - アナログ出力の配線 (ページ 68)
 - Modbus出力の配線 (ページ 70)

ネジ端子の配置については、「HMDW110シリーズの基板 (ページ 66)」を参照してく ださい。

- ケーブルグランドと端子ブロック間のケーブルの長さを調整します。
 カバーを閉じても変換器でケーブルがループにならないように、ケーブルを十分に短くします。
- 4. 配線したネジ端子ブロックを部品ボードから引き抜いて取り外します。

- 5. ポールへの取り付け:
 - a. 付属のクランプとネジを使用してポールに変換器を取り付けます。
 - b. ポールで変換器が回転しないように、クランプの中心穴に固定ネジを締め付けま す。

- 6. 壁への取り付け:
 - a. 壁面コンセント用に2つの穴を100mm離してあけます。
 - b. 壁面コンセントを穴に挿入します。
 - c. 十分な長さの2本のネジを使用して変換器を取り付けます。

7. ネジ端子ブロックを差し込み、カバーを閉じてネジを締め付けます。

8. ジップタイを使用してポールに、またはケーブルクリップを使用して壁にケーブルを 固定します。ケーブルグランドからケーブルが少しぶら下がるようにすることで、水 がケーブルを伝わって変換器に入るのを防ぎます。

HMDW110シリーズの基板

HMDW110 シリーズ 変換器の基板には 2 つの出力タイプがあります。Modbus モード (RS-485 出力)とアナログモード(電流出力)です。出力タイプは、注文時に選択できま す。出力を確認するには、機器の側面ラベルを確認します。

基板には、設定および校正用のサービスポートもあります。

図 37 HMD110/112、HMW110/112、およびHMS110/112モデルの基板、湿度計測と温度計測に 対応

図 38 TMD110、TMW110、TMI110モデルの基板、温度計測にのみ対応

- 1 端子ブロック(4~20mA電流ループ出力用)。端子ブロック③(端子1~4)で、RS-485 接続、および変換器に電源を供給している場合は、接続できません。
- 2 サービスポートコネクタ (4ピンM8)。
- 3 端子ブロック(RS-485出力用)。Modbus接続用。

配線を容易にするため、またサービスポートの使用時に変換器を電源と RS-485 から切断するために、端子ブロックを基板から引き抜くことができま す。

i

Modbus モードで変換器を使用する前に、測定時に接地ループによる影響を防 ぐため、端子 5~8 に結線されていない事を確認します。端子ブロック③で Modbus 通信用に使用される RS-485 コネクタにより、変換器に電源が供給さ れます。

サービスポートへの接続

変換器を PC に接続する前に、次のことを行ってください。

- ・端子5~8(端子台①)が配線されている場合は端子台を引き抜きます。これにより、変換器が電源電圧から切断されるため、接地ループによって発生する可能性がある装置の損傷を防ぐことができます。端子台とサービスポートの位置は、「HMDW110シリーズの基板(ページ 66)」を参照してください。
 - ・端子台③(端子1~4)が配線されている場合も端子台を引き抜きます。これにより、変換器とRDP100リモートディスプレイパネルまたはModbus(RS-485)ホスト間の通信によって接続が妨げられるのを防ぐことができます。

サービスポートは、変換器との一時的な接続用です。Windows オペレーティングシステム を搭載したコンピュータを使用して、設定、校正、およびトラブルシューティングを行う 場合に使用できます。変換器を接続するには、Vaisala Insight ソフトウェアを使用します。 コンピュータとの接続には、Vaisala USB ケーブル(注文コード:219690)も必要です。

サービスポートの RS-485 ラインは、RS-485 Modbus 出力/RDP100 リモートディスプレイ パネルへの出力と共有されます。M8 サービスポートコネクタは、アクセスを容易にするた めの追加のコネクタです。

Insight ソフトウェアは、www.vaisala.com/insight からダウンロードしてください。

ヴァイサラ Insight ソフトウェアおよびシリアルコマンドの詳細と使用例については、「HMDW110 Series User Guide (M211726EN)」(www.vaisala.com/hmdw110)を参照してください。

HMDW110の配線

アナログ出力の配線

HMDW110 シリーズ 変換器は、10~28V DC の範囲の電源電圧で動作するように設計されて います。以下に示すように、必要な最小電圧はループ抵抗(0~600Ω)によって異なりま す。

図 39 HMDW110シリーズの動作電圧範囲

アナログ出力の HMDW110 シリーズ 変換器に電源を供給するには、必ず最初の電流ループ (端子 5 および 6)を接続する必要があります。HMD110/112、HMW110/112、および HMS110/112 モデルでは、2 番目の電流ループ(端子 7 および 8)の接続はオプションで す。

図 40 HMD110/112、HMW110/112、およびHMS110/112の配線例、アナログ出力

1つの電源に対する両方の電流ループの配線

図 42 1つの電源に対するHMD110/112、HMW110/112、およびHMS110/112の配線

HMDW110とRDP100リモートディスプレイパネルの配線

図 43 HMDW110のRDP100リモートディスプレイパネルとの配線

変換器に電源を供給するには、必ず湿度計測電流ループ(HUM、端子5および6)を接続 する必要があります。温度測定電流ループ(端子7および8)の接続はオプションです。

端子 1~4 を使用して RDP100 リモートディスプレイパネルを接続します。HMDW110 シ リーズ変換器によって、RDP100 に電源とデータの両方が提供されます。

アナログ出力を使用するとき、端子 1~4 は、RDP100(オプション)に接続す る場合のみに使用します。RDP100 を使用しない場合は、端子 1~4 は接続し てはいけません。接続されていると、アナログ出力が誤った指示値を出力する 可能性があります。

RDP100 を **GND** 接続できるのは、HMDW110 変換器の端子台③のみです。 ローカルの接地電位には接続しないでください。

RDP100 を HMDW110 シリーズ 変換器とともに使用する場合は、**Extpwr** ジャ ンパーを RDP100 の基板に接続しないでください。

Modbus出力の配線

電源および Modbus 出力には、端子 1~4 を使用します。RS-485 データの配線に加え、 RS-485 ホストと変換器をコモン線(接地基準端子)で接続する必要があります。

図 44 HMDW110シリーズ 変換器の配線、Modbus出力

電源供給、Modbus 出力で端子 1~4 に接続中に、アナログ出力側 (端子 5~8) を接続しないでください。両方の端子が同時に接続されると、想定される接地 ループの影響により、誤ったアナログ指示値が表示される可能性があります。

Modbus通信

注文時に Modbus 構成オプションを付けた場合、Modbus シリアル通信プロトコルを使用 して変換器にアクセスします。サポートされている Modbus の種類は、RS-485 インター フェース上の Modbus RTU(シリアル Modbus)です。

表 17 Modbusシリアル通信の初期設定

内容	初期設定値
シリアルビットレート	19200
パリティ	Ν
データビット数	8
ストップビット数	2
Modbus デバイスアドレス	240
シリアルの遅延	0
通信モード	Modbus RTU

必要に応じて Modbus シリアル通信設定値を変更するには、ヴァイサラ Insight ソフト ウェアを使用します。Insight ソフトウェアは、www.vaisala.com/insight からダウンロー ドしてください。

データエンコーディング

「32 ビット浮動小数点」データ形式を使用したレジスターは、IEEE 754 で定義されている 「binary32」エンコーディング(「単精度浮動小数点数型」とも呼ばれます)を使用してエ ンコードされます。

『Open Modbus TCP Specification, Release 1.0』に規定されているように、浮動小数点数 の下位 16 ビットは、表に示す Modbus レジスターに配置され、上位 16 ビットは、番号/ア ドレス+1 のレジスターに配置されます。これは、「リトルエンディアン」または 「Modicon」ワード順とも呼ばれます。

誤った浮動小数点形式を設定して測定データレジスターを読み取ると、正しく見える値が 表示されることがあります。Modbusホストシステムで浮動小数点形式が正しく構成され ていることを確認するため、最初にレジスター番号 7938(浮動小数点テスト)を読み取る ことを強く推奨します。

テスト値レジスター

テストレジスターから既知のテスト値を読み込み、Modbus 実装環境が機能しているかどうか確認できます。

表18 Modbusテストレジスター(読み取り専用)

レジスター番号 (10 進数)	アドレス (16 進 数)	レジスターの説明	データ形式	テスト値
7937	1F00 _{hex}	符号付き整数テスト	16ビット整数	-12345

レジスター番号 (10 進数)	アドレス (16 進 数)	レジスターの説明	データ形式	テスト値
7938	1F01 _{hex}	浮動小数点テスト	32 ビット浮動 小数点	-123.45
7940	1F03 _{hex}	テキスト文字列テスト	7 文字の ASCII 文字列	テキスト文字 列"-123.45"

計測データレジスター

利用できない(一時的に欠落している)計測データにアクセスしても 、例外は生成されません。 「利用できない」値(quiet NaN)が返されます。

測定出力はメートル単位で表示されます。Modbus で非メートル単位の値を使用する必要がある 場合は、通常、スケーリング機能を使用して Modbus マスター(PLC)で単位を変換します。

表 19 HMD110/112、HMW110/112、およびHMS110/112 Modbus計測データレジスター(読み 取り専用)

レジスター番号 (10 進数)	アドレス (16 進 数)	レジスターの説明	データ形式	単位
1	0000 _{hex}	相対湿度	32 ビット浮動 小数点	%RH
3	0002 _{hex}	温度	32 ビット浮動 小数点	°C
9	0008 _{hex}	露点/霜点温度	32 ビット浮動 小数点	°C
19	0012 _{hex}	湿球温度	32 ビット浮動 小数点	°C
27	001A _{hex}	エンタルピー	32 ビット浮動 小数点	kJ/kg

表 20 TMI110 Modbus計測データレジスター(読み取り専用)

レジスター番号 (10 進数)	アドレス (16 進 数)	レジスターの説明	データ形式	単位
3	0002 _{hex}	温度	32 ビット浮動 小数点	°C
ヴァイサラInsightソフトウェア

ヴァイサラ Insight PC ソフトウェアを使用すると、シリアルコマンドを入力することなく、 HMDW110 シリーズ 変換器の確認、構成、および調整をスムーズに行うことができます。 変換器は、コンピュータ接続用の Vaisala USB ケーブル(注文コード:219690)を使用し て、Insight ソフトウェアに接続できます。

Insight ソフトウェアを使用すると、以下を行うことができます。

- ・ デバイスの情報と状態の確認
- ・リアルタイム計測の表示
- シリアル通信設定、フィルタリング係数、およびアナログ出力のパラメーターとスケー リングの設定
- ・ デバイスの校正と調整。

Insight ソフトウェアのガイドに従って、変換器の設定を変更したり調整を行ったりしま す。ただし、HMDW110 デバイスの調整を行う前に、『HMDW110 Series User Guide』 (M211726EN)の校正と調整の章をよくお読みください。

Insight ソフトウェアは、www.vaisala.com/insight からダウンロードしてください。

HMDW110 シリーズ 変換器は、変換器ソフトウェアバージョン 2.2.3 以降で Insight をサポートします。

Insight ソフトウェアへの接続

・ヴァイサラ Insight ソフトウェアをインストールしたコンピュータ
 ・ USB 接続ケーブル(注文コード 219690)

注意 複数のデバイスを同時に接続する場合は、パソコンの USB ポートから十 分な電力を供給できないことがあります。各ポートに 2W を超える電力を供 給できる外付けの USB ハブを使用してください。

変換器を PC に接続する前に、次のことを行ってください。

- ・端子5~8(端子台①)が配線されている場合は端子台を引き抜きます。これにより、変換器が電源電圧から切断されるため、接地ループによって発生する可能性がある装置の損傷を防ぐことができます。端子ブロックとサービスポートの位置については、基板の説明を参照してください。
 - ・端子台③(端子1~4)が配線されている場合も端子台を引き抜きます。これにより、変換器と Modbus(RS-485)ホスト間の通信によって接続が妨げられるのを防ぐことができます。
- 1. Insight ソフトウェアを開きます。
 - 2. USB ケーブルを PC の空いている USB ポートに接続します。
 - 3. プローブを USB ケーブルに接続します。

4. Insight ソフトウェアで変換器が検出されるのを待ちます。

変換器が検出されない場合は、ヴァイサラ USB ケーブルを外して、変換器のサービス ポートコネクタに再度接続します。

テクニカルサポート

ヴァイサラのテクニカルサポート(helpdesk@vaisala.com)までお問い合わ せください。サポートに必要な以下の情報をご提供ください(該当する場合)。 ・製品の名前、モデル、シリアル番号

- ・ソフトウェア/ファームウェアバージョン
- ・設置場所の情報(会社名、用途など含む)

 情報をご提供いただける担当者様の氏名および連絡先 詳細については、www.vaisala.com/support を参照してください。

保証

標準的な保証条件については、www.vaisala.com/warranty を参照してください。

通常の損耗、特別な環境における使用、不注意な使い方またはインストール、もしく認証 されていない改造による損傷に対しては、上記保証は無効となります。各製品の保証の詳 細については、適用される供給契約または販売条件を参照してください。

リサイクル

🏠 🖳 地域の規制に従って、該当するすべての素材をリサイクルしてください。

HMDW110 系列简介

维萨拉 HUMICAP[®] 湿度和温度变送器系列 HMDW110 可在多种暖通空调应用中测量相对湿度和温度。该系列包括用于管道安装的变送器、IP65 等级壁挂变送器、浸入式温度变送器以及带集成式防辐射罩的室外变送器。可以订购带可选显示屏或不带显示屏的变送器。

该系列包括以下型号:

- · HMD110/112 型号 (RH+T),适用于在通风管道中安装
- · TMD110(T)温度变送器,适用于管道安装
- · HMW110/112 型号 (RH+T),适用于墙面安装
- · TMW110(T)温度变送器,适用于墙面安装
- · HMS110/112 型号 (RH+T),适用于户外使用
- · TMI110 型号 (T),用于测量加热/冷却过程中的水温

可以订购以下型号的变送器:

- · 回路供电的型号,具有湿度(如果适用)和温度的2线电流输出
- · 单独供电的型号,具有 RS-485 Modbus RTU 输出

HMD112、HMW112 和 HMS112 是出厂时对电流输出进行了预配置的标准型号。HMD110、 TMD110、HMW110、TMW110、TMI110 和 HMS110 是提供客户特定输出设置的工厂可配 置型号,这些输出设置包括计算的湿度参数(如果适用)和电流输出的特定量程,或工厂激 活的 Modbus RTU 功能。

HMDW110 系列变送器提供几个输出参数。测量的参数是相对湿度 (RH) 和温度 (T),其他参数是根据 RH 和 T 计算而来。查看变送器上的类型标签,以验证其输出参数和输出通道的对应量程。

参数	符号	单位	说明
温度	Т	°C	摄氏度或华氏度温标下的温度。
		°F	
相对湿度	RH	%	空气中水汽的分压与当前温度下饱和水汽压的比值。
露点	T _{d/f}	°C	空气中的水汽将在当前大气压下凝结为水的温度。当露点低于0℃
		°F	时,变送器将输出霜点 (T _f) 而非露点。
焓值	h	kJ/kg	热力学系统的内部能量总和。
		BTU/lb	
湿球温度	Tw	°C	当前条件下蒸发冷却可以达到的最低温度。
		°F	

表 21 HMDW110 系列输出参数

HMDW110 系列数据表和用户指南(英文版)可从产品页(网址为 www.vaisala.com/hmdw110 www.vaisala.com/hmdw110)以及 docs.vaisala.com 文档门户获取。

HMD110/112 和 TMD110 安装

- 用于顶盖和法兰上的螺钉的中型十字头螺丝刀 (Pozidriv)
- 用于螺钉端子的小型平头螺丝刀
- 用于安装打孔的孔径为 2.5 毫米和 13 毫米的钻头
- · 用于割线和剥线的工具
- · 用于紧固电缆压盖的 19 mm 开口扳手

图 45 HMD110/112 和 TMD110 安装

- 1. 从变送器上取下黄色的运输保护帽并将紧固法兰与变送器分离。
 - 2. 使用法兰在管道一侧上标记安装孔的位置和尺寸。
 - 3. 在管道中钻安装孔。使用两个螺钉(Vaisala 提供)将紧固法兰固定到管道。

4. 将变送器的探头通过法兰推入管道。探头应推得足够深,以便传感器位于管道的中间。

图 46 位于管道内侧中间的 HMD110/112 和 TMD110

- 5. 通过拧紧固定探头的法兰上的螺钉,将变送器固定到法兰。
- 打开变送器顶盖,让电缆穿过电缆压盖。 按照接线说明将电线与螺钉端子连接。
- 7. 紧固电缆压盖并合上变送器顶盖。

HMW110/112 和 TMW110 安装

- 用于顶盖螺钉的中型十字头螺丝刀 (Pozidriv)
- 用于螺钉端子的小型平头螺丝刀
- · 两种安装螺钉: 直径 ≤ 3.5 毫米, 头直径 ≤ 8 毫米
- · 根据墙面材料和螺钉类型,您可能需要电钻和合适的钻头来为螺钉钻安装孔
- · 用于割线和剥线的工具
- · 用于紧固电缆压盖的 19 mm 开口扳手

图 47 HMW110/112 和 TMW110 安装

- 1. 打开变送器顶盖,使用两个螺钉(我们不提供)将变送器固定到墙面。探头和电缆压盖 应尖端向下。
 - 打开变送器顶盖,让电缆穿过电缆压盖。 按照接线说明将电线与螺钉端子连接。
 - 3. 紧固电缆密封套并合上变送器顶盖。
 - 4. 从探头上取下黄色的运输保护盖。

HMS110/112 安装

- ・ 中型十字头螺丝刀 (Pozidriv)
 ・ 用于螺钉端子的小型平头螺丝刀
 ・ 用于割线和剥线的工具
 ・ 用于紧固电缆压盖的 19 mm 开口扳手 用于柱式安装的其他工具:
 ・ 将电缆固定到柱的拉锁 用于墙面安装的其他工具:
 ・ 电钻和钻头
 ・ 螺钉 (2 个,直径 < 5.5 毫米) 和壁式插塞
 · 将电缆固定到墙面的电缆夹
- 1. 拧下支撑变送器顶盖的六个螺钉。
 - 2. 通过电缆密封套接入电源电缆和信号电缆,根据接线说明将电线与螺钉端子连接:
 - · 带模拟输出的设备的接线连接 (第 86 页)
 - 带 Modbus 输出的设备的接线连接 (第 88 页)

有关螺钉端子的排列,请参见 HMDW110 系列电路板 (第 84 页)。

3. 调整电缆密封套与接线端子排之间的电缆长度。

使电缆足够短,以避免在变送器中遗留多余电缆的情况下合上顶盖。

4. 通过将接好线的螺钉接线端子排拔出电路板以断开其连接。

5. **立柱式安装:**

- a. 使用提供的抱箍和螺钉在柱子上安装变送器。
- b. 要防止变送器在柱子上转动,请拧紧抱箍的中心孔上的固定螺钉。

6. 墙面安装:

- a. 为壁式插塞钻两个孔,相隔 100 毫米。
- b. 将墙壁插塞放入孔中。
- c. 使用两个足够长的螺钉安装变送器。

7. 插入螺钉接线端子排,合上顶盖并拧紧螺钉。

 使用紧固带或在墙面上使用电缆夹将电缆固定到柱上。允许一些电缆从电缆压盖垂下 来,以防止水沿着电缆进入变送器。

HMDW110 系列电路板

HMDW110 系列变送器的电路板有 2 种输出类型: Modbus 模式 (RS-485) 和模拟信号模式 (电流输出)。订购设备时选定输出类型。查看设备的类型标签,以了解所选输出类型。

电路板还有一个服务端口用于配置和校准。

图 48 HMD110/112、HMW110/112 和 HMS110/112 型号的电路板,带湿度和温度测量功能

图 49 TMD110、TMW110 和 TMI110 型号的电路板, 仅带温度测量功能

- 1 4...20 mA 电流回路输出的接线端子排。当变送器通过下部接线端子排(端子1...4)中的 RS-485 连接供电时必须断开连接。
- 2 服务端口接头(4针 M8)
- 3 RS-485 输出的接线端子排。针对 Modbus 连接。

您可以从电路板拔出接线端子排以便于安装,以及在使用服务端口时断开变送 器与电源和 RS-485 之间的连接。

在 Modbus 模式下使用变送器前,请始终断开连接端子 5 ... 8 的接线端子排, 以防止接地回路对测量值的影响。下部接线端子排中用于 Modbus 通信的 RS-485 接头将为变送器供电。

连接到服务端口

6

将变送器连接到 PC 之前:

· 如果端子 5 ... 8 的接线端子排已接线,将其拔出。这将断开变送器与电源电压的连接,防止接地回路可能导致的设备损坏。接线端子排和服务端口的位置显示在 HMDW110 系列电路板 (第 84 页)中。

· 如果其他接线端子排已接线(端子1...4),也将其拔出。这可防止变送器与 RDP100远程显示面板或 Modbus (RS-485)主机之间的通信干扰您的连接。

该服务端口设计用于临时连接到变送器。您可以使用运行 Windows 操作系统的计算机将该端口用于配置、校准和故障排除。使用 Vaisala Insight 软件连接到变送器。您还需要一根维萨拉 USB 电缆来连接计算机(订货代码 219690)。

服务端口的 RS-485 线路与到 RS-485 Modbus 输出的连接/到 RDP100 远程显示面板输出的 连接共享; M8 服务端口接头只是为方便访问的额外接头。

从www.vaisala.com/insight 下载 Insight 软件。

有关使用 Vaisala Insight 软件和串行命令的更多信息和示例,请参见 HMDW110 Series User Guide (M211726EN)(网址:www.vaisala.com/ hmdw110)。

HMDW110 接线

带模拟输出的设备的接线连接

HMDW110 系列变送器旨在于 10 ... 28 V DC 的电源电压下工作。所需的最低电压取决于回 路电阻 (0 ... 600 Ω),如下所示:

图 50 HMDW110 系列电源电压工作区域

使用具有模拟输出的 HMDW110 系列变送器时,您必须始终连接第一个电流回路(端子 5 和 6)以向变送器供电。对于型号 HMD110/112、HMW110/112 和 HMS110/112,不强制连接 第二个电流回路(端子 7 和 8)。

图 51 HMD110/112、HMW110/112 和 HMS110/112 接线示例,模拟输出

两个电流回路、单个电源供电的接线连接

图 53 将 HMD110/112、HMW110/112 和 HMS110/112 与单个电源的接线连接

HMDW110 与 RDP100 远程显示面板的接线连接

图 54 HMDW110 与 RDP100 远程显示面板的接线连接

您必须始终连接湿度测量电流回路(HUM,端子 5 和 6)以向变送器供电。不强制连接温度 测量电流回路(端子 7 和 8)。

使用端子 1 ... 4 连接 RDP100 远程显示面板。HMDW110 系列变送器同时向 RDP100 提供电源和数据。

使用模拟输出时端子1...4应仅用于连接 RDP100(可选)。如果未使用 RDP100,端子1...4必须保持断开状态,否则模拟输出可能输出不正确的读 数。

i

将 RDP100 用于 HMDW110 系列变送器时,不要将 **Extpwr** 跳线连接到 RDP100 电路板。

带 Modbus 输出的设备的接线连接

将端子 1 ... 4 用于电源和 Modbus 输出。除了 RS-485 数据线之外,必须连接 RS-485 主机 和变送器之间的公共线(接地参考)。

图 55 HMDW110 系列变送器接线,Modbus 输出

当电源和/或 Modbus 输出连接到端子1...4 时,请不要同时连接模拟输出(端子5...8)。同时连接这两排端子可能因为接地回路的影响导致模拟读数错误。

Modbus 通信

如果订购的变送器配有 Modbus 配置选项,则使用 Modbus 串行通信协议来访问。支持的 Modbus 变量是 RS-485 接口基础上的 Modbus RTU(串行 Modbus)。

表 22 默认 Modbus 串行通信设置

说明	默认值
串行比特率	19200
奇偶校验	无(N)
数据位数	8
停止位数	2
Modbus 设备地址	240
串行延迟	0
通信模式	Modbus RTU

可根据需要使用 Vaisala Insight 软件更改 Modbus 串行通信设置。从 www.vaisala.com/ insight 下载 Insight 软件。

数据编码

使用"32 位浮点"数据格式的寄存器是使用 IEEE 754 中定义的"binary32"编码进行编码的(也称为"单精度浮点格式")。

按开放型 Modbus TCP 规范版本 1.0 中所述,浮点数的最低有效 16 位放在表中所列的 Modbus 寄存器中,最高的有效 16 位放在编号/地址 + 1 的寄存器中。这也被称为"小字节 序 (little-endian)"或"Modicon"字顺序。

读取浮点格式设置不正确的测量数据寄存器有时可能导致看上去正确的值。强烈建议首先尝 试读取寄存器编号 7938(浮点测试),以查看您是否在 Modbus 主机系统上正确配置了浮 点格式。

测试值寄存器

读取测试寄存器中的已知测试值,以验证 Modbus 系统的功能。

表 23 Modbus 测试寄存器(只读)

寄存器编号(十 进制)	地址(十六进 制)	寄存器说明	数据格式	测试值
7937	1F00 _{hex}	带符号整数测试	16 位整数	-12345
7938	1F01 _{hex}	浮点测试	32 位浮点	-123.45
7940	1F03 _{hex}	文本字符串测试	包含 7 个字符的 ASCII 字符串	文本字符串 "-123.45"

测量数据寄存器

访问不可用(暂时缺失)的测试数据不会生成异常,而是返回"不可用"值(安静的 NaN)。

测试输出用公制单位显示。如果 Modbus 中需要使用非公制单位,应使用常用的定标函数在 Modbus 主板 (PLC) 中转换单位。

表 24 HMD110/112、HMW110/112 和 HMS110/112 Modbus 测量数据寄存器(只读)

寄存器编号(十 进制)	地址(十六进 制)	寄存器说明	数据格式	单位
1	0000 _{hex}	相对湿度	32 位浮点	%RH
3	0002 _{hex}	温度	32 位浮点	°C
9	0008 _{hex}	露/霜点温度	32 位浮点	°C
19	0012 _{hex}	湿球温度	32 位浮点	°C
27	001A _{hex}	焓值	32 位浮点	kJ/kg

表 25 TMI110 Modbus 测量数据寄存器(只读)

寄存器编号(十 进制)	地址(十六进 制)	寄存器说明	数据格式	单位
3	0002 _{hex}	温度	32 位浮点	°C

维萨拉 Insight 软件

Vaisala Insight PC 软件可用于直观地检查、配置和调整 HMDW110 系列变送器,而无需输 入任何串行命令。该变送器可以使用用于连接计算机的维萨拉 USB 电缆(订货代码 219690)连接到 Insight 软件。

使用 Insight 软件, 您可以:

- · 查看设备信息和状态。
- · 查看实时测量。
- · 配置串行通信设置、滤波因子和模拟输出参数以及量程。
- · 校准和调整设备。

Insight 软件可引导您在变送器上更改设置和执行调整。但是,在 HMDW110 设备上执行调整前,请认真阅读《HMDW110 Series User Guide》(M211726EN) 中有关校准和调整的章节。

从 www.vaisala.com/insight 下载 Insight 软件。

HMDW110系列变送器支持来自变送器软件版本 2.2.3 之后的 Insight。

连接到 Insight 软件

- · 安装了维萨拉 Insight 软件的计算机
- · USB 连接电缆(产品代码 219690)

小心 请注意,在同时连接多个设备时,您的计算机可能无法通过其 USB 端口 提供足够的电能。使用可为每个端口提供大于 2 W 的外部供电 USB 集线器。

将变送器连接到 PC 之前:

- 如果端子5...8的接线端子排已接线,将其拔出。这将断开变送器与电源电压的连接,防止接地回路可能导致的设备损坏。有关端子排和服务端口的位置,请参见电路板说明。
- · 如果其他接线端子排已接线(端子1...4),也将其拔出。这可防止变送器与 Modbus (RS-485) 主机之间的通信干扰您的连接。
- 1. 打开 Insight 软件。
 - 2. 将 USB 电缆连接到 PC 上的空闲 USB 端口。
 - 3. 将 USB 电缆连接到变送器的服务端口。
 - 4. 等待 Insight 软件检测变送器。

如果未检测到变送器,则断开维萨拉 USB 电缆与变送器的服务端口接头的连接,然后 重新连接。

技术支持

请与维萨拉技术支持部门联系,网址为 helpdesk@vaisala.com。请至少提供以 下支持信息(如果适用):

- · 产品名称、型号和序列号
- · 软件/固件版本
- · 安装地点的名称和位置
- 可对问题提供更多信息的技术人员的姓名和联系信息

有关更多信息,请参见 www.vaisala.com/support。

质保

有关标准质保条款和条件,请参见 www.vaisala.com/warranty。

请注意,因正常磨损、异常工作环境、操作或安装疏忽或未经授权的改动导致的设备损坏, 不在任何此类质保的范围之列。 有关每种产品质保的详细信息,请参见适用的供货合同或销 售条款。

环保

Общие сведения о серии HMDW110

Преобразователь для измерения влажности и температуры Vaisala HUMICAP® серии HMDW110 измеряет относительную влажность и температуру в различных областях применения систем отопления, вентиляции и кондиционирования воздуха. В эту серию входят преобразователи для монтажа в воздуховоде, настенные преобразователи со степенью защиты IP65, погружные преобразователи для измерения температуры и преобразователи для применения на улице со встроенными экранами радиационной защиты. Преобразователи можно заказывать с дополнительным дисплеем или без дисплея.

В серию входят следующие модели:

- Модели HMD110/112 (RH+T) для установки в воздуховодах.
- Преобразователь для измерения температуры TMD110 (T), устанавливаемый в воздуховоде.
- Модели HMW110/112 (RH+T) для установки на стене.
- Преобразователь для измерения температуры TMW110 (Т) для установки на стене.
- Модели HMS110/112 (RH+T) для использования на улице.
- Модели ТМІІІО (Т) для измерения температуры отопительной/охлаждающей воды.

Преобразователи можно заказывать в следующих вариантах:

- Модели с питанием от контура: оснащены двухпроводными токовыми выходами для влажности (если применимо) и температуры.
- Модели с отдельным питанием: с выходом RS-485 Modbus RTU

HMD112, HMW112 и HMS112 — это стандартные модели, настраиваемые по выходному току на заводе. Модели HMD110, TMD110, HMW110, TMW110, TMI110 и HMS110 поставляются с заводскими настройками в соответствии с требованиями заказчика, которые включают параметры расчета влажности (если применимо) и коэффициенты масштабирования выходного тока, или с активированной на заводе функцией Modbus RTU.

Преобразователи серии HMDW110 имеют множество выходных параметров. Измеряемые параметры — относительная влажность (RH) и температура (T), а остальные параметры рассчитываются на основе RH и T. Проверьте этикетку типа на преобразователе, чтобы выяснить его выходные параметры и масштабирование в выходных каналах.

Параметр	Сим- вол	Единицы измере- ния	Описание
Температура	Т	°C	Температура по шкале Цельсия.
Относитель- ная влажность	RH	%	Отношение парциального давления водяного пара, со- держащегося в воздухе, к давлению насыщенного водя- ного пара при данной температуре.
Точка росы	T _{d/f}	°C	Температура, при которой водяной пар, содержащийся в воздухе, становится насыщенным при данном давле- нии. Если точка росы ниже 0 °С, вместо точки росы пре- образователь выводит значение температуры образ- ования инея (T _f).

Табл. 26 Выходные параметры устройств серии HMDW110

РУССКИ

Параметр	Сим- вол	Единицы измере- ния	Описание
Энтальпия	h	кДж/кг БТЕ/фунт	Суммарная внутренняя энергия термодинамической системы.
Температура по влажному термометру	Tw	°C	Минимальная температура, которая может быть достиг- нута при испарительном охлаждении в данных услови- ях.

Спецификация и руководство пользователя для серии HMDW110 (на английском языке) доступны на странице продукта по адресу www.vaisala.com/hmdw110 и на портале документации по адресу docs.vaisala.com.

Установка устройств HMD110/112 и TMD110

- Крестообразная отвертка среднего размера (Pozidriv) для винтов на крышке и фланце
 - Маленькая отвертка с плоской головкой для винтовых зажимов
 - Дрель со сверлами диаметром 2,5 и 13 мм для сверления монтажных отверстий
 - Инструменты для резки и зачистки проводов
 - Рожковый ключ на 19 мм для затяжки сальника кабеля

Рис. 56 Установка устройств НМD110/112 и ТМD110

- 1. Снимите желтый колпачок для защиты при транспортировке и отделите от преобразователя соединительный фланец.
 - С помощью фланца отметьте расположение и размер монтажных отверстий на воздуховоде.
 - Просверлите в воздуховоде монтажные отверстия. Закрепите соединительный фланец на воздуховоде с помощью двух винтов (входят в комплект поставки).

 Введите зонд преобразователя через фланец в воздуховод. Зонд должен зайти достаточно далеко, чтобы датчик был расположен в середине воздуховода.

Рис. 57 Центровка устройств НМD110/112 и ТМD110 внутри воздуховода

- Прикрепите преобразователь к фланцу, затянув на фланце винт, который удерживает зонд.
- 6. Откройте крышку преобразователя и пропустите кабели через сальники.

Подключите провода к винтовым зажимам в соответствии с инструкциями по подключению.

7. Затяните сальники кабелей и закройте крышку преобразователя.

Установка устройств HMW110/112 и TMW110

Рис. 58 Установка устройств HMW110/112 и TMW110

- Откройте крышку преобразователя и с помощью двух винтов (не входят в комплект поставки) прикрепите преобразователь к стене. Зонд и сальник кабеля должны быть направлены вниз.
 - 2. Откройте крышку преобразователя и пропустите кабель через сальник.

Подключите провода к винтовым зажимам в соответствии с инструкциями по подключению.

- 3. Затяните кабельный ввод и закройте крышку преобразователя.
- 4. Снимите с зонда желтый колпачок для защиты при транспортировке.

Установка НМS110/112

- Крестообразная отвертка среднего размера (Pozidriv)
- Маленькая отвертка с плоской головкой для винтовых зажимов
- Инструменты для резки и зачистки проводов

• Рожковый ключ на 19 мм для затяжки сальника кабеля

Дополнительные инструменты для установки на опору:

• Пластиковые хомуты для закрепления кабеля на опоре

Дополнительные инструменты для настенного монтажа:

- Дрель и сверла
- Винты (2 шт., Ø < 5,5 мм) и дюбели
- Зажимы для крепления кабеля на стене
- 1. Выкрутите шесть крепежных винтов крышки преобразователя.
 - Протяните питающий и сигнальный кабели через кабельный ввод и подсоедините их к винтовым клеммам в соответствии с приведенными ниже инструкциями.
 - Подключение устройств с аналоговым выходом (страница 103)
 - Подключение устройств с выходом Modbus (страница 105)

Сведения о расположении винтовых клемм см. в разделе Монтажные платы преобразователей серии HMDW110 (страница 101).

3. Отрегулируйте длину кабеля между клеммными колодками и кабельным вводом.

Укоротите кабель таким образом, чтобы он не образовывал петлю при закрытии крышки преобразователя.

4. Потяните винтовые клеммные колодки и отсоедините их от монтажной платы.

5. Монтаж на опору:

- Установите преобразователь на опору с помощью хомута и винтов, входящих в комплект поставки.
- Утобы преобразователь не проворачивался вокруг опоры, затяните установочный винт в центральном отверстии хомута.

6. Установка на стену:

- а. Просверлите два отверстия для дюбелей на расстоянии 100 мм друг от друга.
- b. Вставьте дюбели в отверстия.
- с. Установите преобразователь с помощью двух винтов подходящей длины.

7. Установите на место винтовые клеммные колодки, закройте крышку и затяните винты.

 Закрепите кабель на опоре с помощью гибкого хомута либо на стене с помощью кабельных зажимов. Небольшой участок кабеля должен свисать с сальника, чтобы предотвратить попадание влаги в преобразователь по кабелю.

Монтажные платы преобразователей серии HMDW110

У монтажных плат преобразователей серии HMDW110 два типа выходов: в режиме Modbus (RS-485) и в аналоговом режиме (выходной ток). Тип выхода выбирается при заказе устройства. Выбранный тип выхода можно проверить на этикетке устройства.

Монтажные платы также оснащены сервисным портом для настройки и калибровки.

Рис. 59 Монтажная плата моделей HMD110/112, HMW110/112 и HMS110/112 с возможностью измерения влажности и температуры

Рис. 60 Монтажная плата моделей ТМD110, ТМW110 и ТМ1110 с возможностью измерения только температуры

- Клеммная колодка для выходов на токовую петлю 4-20 мА. Ее необходимо отключить, если преобразователь получает питание через соединение RS-485 в нижней клеммной колодке (клеммы 1-4).
- 2 Разъем сервисного порта (4-контактный, M8).
- 3 Клеммная колодка для выхода RS-485. Для подключения Modbus.

Клеммные колодки можно отсоединить от платы компонентов для упрощения установки и отключения преобразователя от сети питания и интерфейса RS-485 при использовании сервисного порта.

Перед использованием преобразователя в режиме Modbus всегда отключайте клеммную колодку для клемм с 5 по 8, чтобы контур заземления не влиял на измерения. Питание на преобразователь будет подаваться через разъем RS-485 в нижней клеммной колодке, используемый для связи по Modbus.

Подключение к сервисному порту

Перед подключением преобразователя к ПК:

- Если к клеммам 5-8 клеммной колодки подсоединены провода, отсоедините их. Это необходимо для отсоединения преобразователя от сети питания и предотвращения повреждения оборудования в случае возникновения цепи возврата через землю. Расположение клеммных колодок и сервисного порта см. в разделе Монтажные платы преобразователей серии HMDW110 (страница 101).
- Если к другой клеммной колодке подключены провода (клеммы 1–4), также отсоедините их. Это позволит защитить соединение между преобразователем и удаленной индикаторной панелью RDP100 или узлом Modbus (RS-485) от помех.

Сервисный порт предназначен для временного подключения к преобразователю. Его можно использовать для конфигурирования, калибровки и поиска и устранения неисправностей с помощью компьютера с операционной системой Windows. Используйте программное обеспечение Vaisala Insight для подключения к преобразователю. Также потребуется USB-кабель Vaisala для подключения к компьютеру (код заказа 219690).

Линия RS-485 сервисного порта предназначена также для подключения выхода Modbus RS-485 или индикаторной панели RDP100. Сервисный порт M8 — это дополнительный разъем для облегчения доступа.

Программное обеспечение Insight можно скачать по адресу www.vaisala.com/ insight.

đ

Дополнительные сведения и примеры использования программного обеспечения Vaisala Insight и команд последовательного интерфейса можно найти в документе *HMDW110 Series User Guide (M211726EN)*, доступном по адресу www.vaisala.com/hmdw110.

Подключение HMDW110

Подключение устройств с аналоговым выходом

Питание преобразователей серии HMDW110 осуществляется от источника питания 10-28 В пост. тока. Минимальное необходимое напряжение зависит от сопротивления контура (0-600 Ом), как показано ниже.

Если заказаны преобразователи серии HMDW110 с аналоговым выходом, необходимо всегда подключать первый токовый контур (клеммы 5 и 6) для подачи питания на преобразователь. При использовании моделей HMD110/112, HMW110/112 и HMS110/112 подключать второй токовый контур (клеммы 7 и 8) необязательно.

Рис. 63 Подключение ТМІ110, ТМШ110 и ТМD110, аналоговый выход

Подключение обоих токовых контуров к одному источнику питания

Рис. 64 Подключение HMD110/112, HMW110/112 и HMS110/112 к одному источнику питания

Подключение HMDW110 с удаленной индикаторной панелью RDP100

Рис. 65 Подключение HMDW110 с удаленной индикаторной панелью RDP100

Необходимо всегда подключать токовый измерительный контур влажности (**HUM**, клеммы 5 и 6) для подачи питания на преобразователь. Подключать токовый измерительный контур температуры (клеммы 7 и 8) необязательно.

Подключите удаленную индикаторную панель RDP100, используя клеммы 1-4. Преобразователи серии HMDW110 передают данные в панели RDP100 и осуществляют их питание.

Клеммы 1-4 должны использоваться только для подключения RDP100 (опция) при использовании аналоговых выходов. Если RDP100 не используется, клеммы 1-4 необходимо оставить свободными. В противном случае показания аналоговых выходов могут быть неверными.

Вход **GND** панели RDP100 должен подключаться только к клемме 3 преобразователя HMDW110. Его нельзя подключать к какому-либо локальному заземлению.

При использовании панелей RDP100 с преобразователями серии HMDW110 не подключайте перемычку **Extpwr** к монтажной плате RDP100.

Подключение устройств с выходом Modbus

Используйте клеммы 1–4 для подачи питания и вывода Modbus. В дополнение к проводам для передачи данных RS-485 необходимо подключить общий провод (опорное заземление) между устройством с RS-485 и преобразователем.

Не подключайте аналоговые выходы (клеммы 5-8) одновременно с подачей питания и/или подключением выхода Modbus к клеммам 1-4. Одновременное подключение обеих клемм может привести к ошибочным аналоговым показаниям из-за влияния возможного контура заземления.

Связь по протоколу Modbus

Доступ к преобразователям с опцией конфигурации Modbus можно осуществлять по протоколу последовательной линии связи Modbus. Поддерживаемый вариант Modbus — Modbus RTU (последовательный Modbus) по интерфейсу RS-485.

Табл. 27 Параметры последовательной передачи данных по протоколу Modbus, установленные по умолчанию

Описание	Значение по умолчанию
Скорость последовательной передачи данных	19200
Контроль четности	Ν
Число бит данных	8
Число стоповых бит	2
Адрес устройства Modbus	240
Последовательная задержка	0
Режим связи	Modbus RTU

Используйте программное обеспечение Vaisala Insight для изменения параметров последовательной передачи данных по протоколу Modbus, если это необходимо. Программное обеспечение Insight можно скачать по адресу www.vaisala.com/insight.

Кодирование данных

Регистры, использующие формат данных «32-разрядное число с плавающей запятой», кодируются в формате «32-разрядное двоичное число» согласно определению в стандарте IEEE 754 (также называемом форматом «число одинарной точности с плавающей запятой»).

Наименее значимые 16 бит числа с плавающей запятой помещаются в регистр Modbus, указанный в таблице, тогда как наиболее значимые 16 бит помещаются в регистр с номером/адресом + 1, как указано в спецификации Open Modbus TCP, выпуск 1.0. Этот подход также известен как «прямой порядок байтов» или порядок слов «Modicon».

Чтение регистров данных измерений с неверной настройкой формата плавающей запятой может иногда приводить к похожим на верные значения. Настоятельно рекомендуется сначала попробовать прочитать номер регистра 7938 (проверка плавающей запятой), чтобы увидеть, верно ли настроен формат плавающей запятой в вашей системе с Modbus.

Регистры тестовых значений

Выполните чтение тестовых значений из тестовых регистров, чтобы проверить работу вашей реализации Modbus.

Номер регистра (десятичное зна- чение)	Адрес (шест- надцатеричное значение)	Описание регистра	Формат дан- ных	Тестовое значение
7937	1FOO _{шестнадц.}	Тест целого числа со знаком	16-разрядное целое	-12345
7938	1F01 _{шестнадц}	Тест плавающей запя- той	32-разрядное число с пла- вающей запя- той	-123.45
7940	1F03 _{шестнадц} .	Тест текстовой строки	ASCII-строка из 7 символов	Текстовая строка «-123.45»

Табл. 28 Тестовые регистры Modbus (только чтение)

Регистры данных измерений

Обращение к недоступным (временно отсутствующим) данным измерений не вызывает исключение. Вместо этого возвращается «недоступное» значение (quiet NaN).

Результат измерений отображается в метрических единицах. Если при использовании Modbus требуются неметрические значения, следует выполнить преобразование единиц измерения на ведущем устройстве Modbus (ПЛК), используя стандартные доступные функции масштабирования.

Табл. 29 Регистры данных измерений HMD110/112, HMW110/112 и HMS110/112 с использованием Modbus (только чтение)

Номер регистра (десятичное зна- чение)	Адрес (шест- надцатеричное значение)	Описание регистра	Формат дан- ных	Ед. изм.
1	0000 _{шестнадц.}	Относительная влаж- ность	32-разрядное число с пла- вающей запя- той	% отн. влаж- ности
3	0002 _{шестнадц.}	Температура	32-разрядное число с пла- вающей запя- той	°C
9	0008 _{шестнадц.}	Температура точки ро- сы/инея	32-разрядное число с пла- вающей запя- той	°C

Номер регистра (десятичное зна- чение)	Адрес (шест- надцатеричное значение)	Описание регистра	Формат дан- ных	Ед. изм.
19	0012 _{шестнадц.}	Температура по влаж- ному термометру	32-разрядное число с пла- вающей запя- той	°C
27	001А _{шестнадц.}	Энтальпия	32-разрядное число с пла- вающей запя- той	кДж/кг

Табл. 30 Регистр данных измерений ТМІ110 с использованием Modbus (только чтение)

Номер регистра (десятичное зна- чение)	Адрес (шест- надцатеричное значение)	Описание регистра	Формат дан- ных	Ед. изм.
3	0002 _{шестнадц.}	Температура	32-разрядное число с пла- вающей запя- той	°C
Программное обеспечение Vaisala Insight

Программное обеспечение Vaisala Insight PC можно использовать для проверки, настройки и регулировки преобразователей серии HMDW110 интуитивным способом без ввода команд последовательного интерфейса. Преобразователь можно подключить к программному обеспечению Insight с помощью USB-кабеля Vaisala для соединения с компьютером (код заказа 219690).

Программное обеспечение Insight предоставляет следующие возможности:

- Просмотр сведений об устройстве и его состояния.
- Просмотр измерений в реальном времени.
- Настройка параметров последовательной передачи данных, коэффициента фильтрации и аналоговых выводов, а также масштабирования.
- Калибровка и настройка устройства.

Программное обеспечение Insight содержит указания по изменению параметров и выполнению регулировки на преобразователе. Тем не менее, внимательно прочтите разделы о калибровке и регулировке в *HMDW110 Series User Guide* (M211726EN) перед выполнением регулировки на устройстве HMDW110.

Программное обеспечение Insight можно скачать по адресу www.vaisala.com/insight.

Преобразователи серии HMDW110 поддерживают Insight, начиная с версии 2.2.3 программного обеспечения преобразователя.

Подключение к программному обеспечению Insight

- Компьютер с установленным программным обеспечением Vaisala Insight
- Соединительный USB-кабель (код изделия 219690)

ОСТОРОЖНО! При одновременном подключении нескольких устройств следует иметь в виду, что компьютер может не обеспечивать достаточную мощность через порты USB. Используйте концентратор USB с внешним питанием, который может обеспечить > 2 Вт для каждого порта.

Перед подключением преобразователя к ПК:

- Если к клеммам 5...8 клеммной колодки подсоединены провода, отсоедините их. Это необходимо для отключения преобразователя от сети питания и предотвращения повреждения оборудования в случае возникновения цепи возврата через землю. Расположение клеммных колодок и сервисного порта см. в описании монтажной платы.
- Если к другой клеммной колодке подключены провода (клеммы 1-4), также отсоедините их. Это позволит защитить соединение между преобразователем и узлом Modbus (RS-485) от помех.
- Откройте программное обеспечение Insight.
 - 2. Подключите USB-кабель к свободному порту USB на ПК.
 - 3. Подключите кабель USB к сервисному порту преобразователя.
 - 4. Подождите, пока программное обеспечение Insight обнаружит преобразователь.

Если преобразователь не обнаружен, отключите и снова подключите USB-кабель Vaisala к разъему сервисного порта преобразователя.

Техническая поддержка

Обратитесь в службу технической поддержки компании Vaisala по адресу helpdesk@vaisala.com. В зависимости от ситуации предоставьте как минимум следующие данные:

- название, версия и серийный номер продукта;
- версия программного/аппаратно-программного обеспечения;
- название и местоположение места установки;
- имя и контактная информация технического специалиста, который может предоставить дополнительную информацию о проблеме.

Более подробную информацию см. в www.vaisala.com/support.

Гарантия

Для получения информации о сроках и условиях стандартной гарантии перейдите по ссылке www.vaisala.com/warranty.

Следует иметь в виду, что любая подобная гарантия может оказаться недействительной в случае повреждений из-за естественного износа, исключительных условий эксплуатации, небрежного обращения, ненадлежащей установки или несанкционированных изменений. Подробная информация о гарантиях на каждое изделие содержится в соответствующем контракте или договоре о поставке.

Утилизация

Утилизируйте все используемые материалы в соответствии с местным законодательством.

www.vaisala.com